Implications of Palm Kernel Shell-Filled Plastic Bottles on the Structural Behavior of Concrete Slab
Abstract
Doi: 10.28991/CEJ-2023-09-03-016
Full Text: PDF
Keywords
References
Sandanayake, M., Bouras, Y., Haigh, R., & Vrcelj, Z. (2020). Current sustainable trends of using waste materials in concrete—a decade review. Sustainability (Switzerland), 12(22), 1–38. doi:10.3390/su12229622
United Nations Environment Programme. (2018). Single-use plastics, a roadmap for sustainability. United Nations Environment Programme, New York, United States. Available online: https://www.unenvironment.org/resources/report/single-use-plastics-roadmap-sustainability (accessed on January 2023).
Abergel, T., Dean, B., & Dulac, J. (2017). Towards a zero-emission, efficient, and resilient buildings and construction sector: Global Status Report 2017. UN Environment and International Energy Agency, Paris, France.
Okpala, D. C. (1990). Palm kernel shell as a lightweight aggregate in concrete. Building and Environment, 25(4), 291–296. doi:10.1016/0360-1323(90)90002-9
Pantzaris, T. P., & Mohd Jaafar, A. (2002). Techno-economic aspects of palm oil kernel meal as an animal feed. Palmas (Colombia), 53-61.
Olanipekun, E. A., Olusola, K. O., & Ata, O. (2006). A comparative study of concrete properties using coconut shell and palm kernel shell as coarse aggregates. Building and Environment, 41(3), 297–301. doi:10.1016/j.buildenv.2005.01.029
Teo, D. C. L., Mannan, M. A., & Kurian, J. V. (2006). Flexural behaviour of reinforced lightweight concrete beams made with oil palm shell (OPS). Journal of Advanced Concrete Technology, 4(3), 459–468. doi:10.3151/jact.4.459
Ramlee, N. A., Jawaid, M., Zainudin, E. S., & Yamani, S. A. K. (2019). Tensile, physical and morphological properties of oil palm empty fruit bunch/sugarcane bagasse fibre reinforced phenolic hybrid composites. Journal of Materials Research and Technology, 8(4), 3466–3474. doi:10.1016/j.jmrt.2019.06.016
Kukarni, V. P., Gaikwad, S. K. B., & Kumar, B. (2013). Comparative study on coconut shell aggregate with conventional concrete. International Journal of Engineering and Innovative Technology, 2(12), 67-70.
Basri, H. B., Mannan, M. A., & Zain, M. F. M. (1999). Concrete using waste oil palm shells as aggregate. Cement and Concrete Research, 29(4), 619–622. doi:10.1016/S0008-8846(98)00233-6
Amu, O. O., Adeyeri, J. B., Haastrup, A. O., & Eboru, A. A. (2008). Effects of Palm Kernel Shells in Lateritic Soil for Asphalt Stabilization. Research Journal of Environmental Sciences, 2(2), 132–138. doi:10.3923/rjes.2008.132.138
Ndoke, P. N. (2006). Performance of palm kernel shells as a partial replacement for coarse aggregate in asphalt concrete. Leonardo Electronic Journal of Practices and Technologies, 5(9), 145-152.
Olutoge, F. A. (2010). Investigations on Sawdust and Palm Kernel Shells as Aggregate Replacement. ARPN Journal of Engineering and Applied Sciences, 5(4), 7–13.
Danso, H. (2013). Building Houses with Locally Available Materials in Ghana: Benefits and Problems. International Journal of Science and Technology, 2(2), 225–231.
Abdullah, N., & Sulaim, F. (2013). The Oil Palm Wastes in Malaysia. Biomass Now - Sustainable Growth and Use. InTech, London, United Kingdom. doi:10.5772/55302
Ramezanianpour, A. A., Mahdikhani, M., & Ahmadibeni, G. (2009). The effect of rice husk ash on mechanical properties and durability of sustainable concretes. International Journal of Civil Engineering, 7(2), 83–91.
Nimityongskul, P., & Daladar, T. U. (1995). Use of coconut husk ash, corn cob ash and peanut shell ash as cement replacement. Journal of Ferrocement, 25(1), 35–44.
Slim, J. A., & Wakefield, R. W. (1991). Utilisation of sewage sludge in the manufacture of clay bricks. Water SA, 17(3), 197–202.
Ghansah, B., Mahunu, G. K., Ansah, E. K., & Benuwa, B. B. (2015). Impact of Pet Bottles Disposal and Management Mechanisms in Selected Urban Cities in Ghana. Journal of Multidisciplinary Engineering Science and Technology, 2(6), 1289-1297.
Alengaram, U. J., Mahmud, H., & Jumaat, M. Z. (2010). Comparison of mechanical and bond properties of oil palm kernel shell concrete with normal weight concrete. International Journal of Physical Sciences, 5(8), 1231–1239.
Osei, D. Y., & Jackson, E. N. (2012). Experimental Study on Palm Kernel Shells as Coarse Aggregates in Concrete. International Journal of Scientific & Engineering Reasearch, 3(8), 1–6.
Olusola, K. O., & Babafemi, A. J. (2013). Effect of coarse aggregate sizes and replacement levels on the strength of palm kernel shell (PKS) concrete. Civil Engineering Dimension, 15(1), 43-50. doi:10.9744/ced.15.1.43-50.
Yew, M. K., Bin Mahmud, H., Ang, B. C., & Yew, M. C. (2014). Effects of Oil Palm Shell Coarse Aggregate Species on High Strength Lightweight Concrete. The Scientific World Journal, 2014, 1–12. doi:10.1155/2014/387647.
Foong, K. Y., Alengaram, U. J., Jumaat, M. Z., & Mo, K. H. (2015). Enhancement of the mechanical properties of lightweight oil palm shell concrete using rice husk ash and manufactured sand. Journal of Zhejiang University: Science A, 16(1), 59–69. doi:10.1631/jzus.A1400175.
Mo, K. H., Alengaram, U. J., & Jumaat, M. Z. (2015). Experimental Investigation on the Properties of Lightweight Concrete Containing Waste Oil Palm Shell Aggregate. Procedia Engineering, 125, 587–593. doi:10.1016/j.proeng.2015.11.065.
Aslam, M., Shafigh, P., Jumaat, M. Z., & Lachemi, M. (2016). Benefits of using blended waste coarse lightweight aggregates in structural lightweight aggregate concrete. Journal of Cleaner Production, 119, 108–117. doi:10.1016/j.jclepro.2016.01.071.
Adewuyi, A. P., & Adegoke, T. (2008). Exploratory Study of Periwinkle Shells as Coarse Aggregates in Concrete Works. ARPN Journal of Engineering and Applied Sciences, 3(6), 1–5.
Agbede, O. I., & Manasseh, J. (2009). Suitability of periwinkle shell as partial replacement for river gravel in concrete. Leonardo Electronic Journal of Practices and Technologies, 15(2), 59-66.
Osadebe, N. N., & Ibearugbulem, O. M. (2009). Application of Scheffe’s simplex model in optimizing compressive strength of periwinkle shell granite concrete. The Heartland Engineer, 4(1), 27–38.
Shafigh, P., Jumaat, M. Z., & Mahmud, H. (2011). Oil palm shell as a lightweight aggregate for production high strength lightweight concrete. Construction and Building Materials, 25(4), 1848–1853. doi:10.1016/j.conbuildmat.2010.11.075.
Alengaram, U. J., Muhit, B. A. Al, & Jumaat, M. Z. Bin. (2013). Utilization of oil palm kernel shell as lightweight aggregate in concrete - A review. Construction and Building Materials, 38, 161–172. doi:10.1016/j.conbuildmat.2012.08.026.
Imam, H. B. U., & Usman, N. (2014). Compressive strength of concrete using palm oil nut shell as light weight aggregate. Journal of Civil Engineering and Environmental Technology (JCEET), 15.
Gibigaye, M., Godonou, G. F., Katte, R., & Degan, G. (2017). Structured mixture proportioning for oil palm kernel shell concrete. Case Studies in Construction Materials, 6, 219–224. doi:10.1016/j.cscm.2017.04.004.
Yusuf, I. T., Babatunde, Y. O., & Abdullahi, A. (2018). Investigation on the Flexural Strength of Palm Kernel Shell Concrete for Structural Applications. Malaysian Journal of Civil Engineering, 30(2), 268–281. doi:10.11113/mjce.v30n2.479.
Khankhaje, E., Rafieizonooz, M., Salim, M. R., Mirza, J., Salmiati, & Hussin, M. W. (2017). Comparing the effects of oil palm kernel shell and cockle shell on properties of pervious concrete pavement. International Journal of Pavement Research and Technology, 10(5), 383–392. doi:10.1016/j.ijprt.2017.05.003.
Islam, M. M. U., Mo, K. H., Alengaram, U. J., & Jumaat, M. Z. (2016). Mechanical and fresh properties of sustainable oil palm shell lightweight concrete incorporating palm oil fuel ash. Journal of Cleaner Production, 115(1), 307–314. doi:10.1016/j.jclepro.2015.12.051.
Khankhaje, E., Salim, M. R., Mirza, J., Hussin, M. W., & Rafieizonooz, M. (2016). Properties of sustainable lightweight pervious concrete containing oil palm kernel shell as coarse aggregate. Construction and Building Materials, 126, 1054–1065. doi:10.1016/j.conbuildmat.2016.09.010.
Oyedepo, O. J., Olanitori, L. M., & Akande, S. P. (2015). Performance of coconut shell ash and palm kernel shell ash as partial replacement for cement in concrete. Journal of Building Materials and Structures, 2(1), 18–24. doi:10.34118/jbms.v2i1.16.
Oti, O. P., Nwaigwe, K. N., & Okereke, N. A. A. (2017). Assessment of palm kernel shell as a composite aggregate in concrete. Agricultural Engineering International: CIGR Journal, 19(2), 34–41.
Abang, A., Abang, A., Abdus Salam, S. K. & Abang A. R. (1984) Basic strength properties of lightweight concrete using agricultural wastes as aggregates. International Conference on Low-Cost Housing for Developing Countries, 12-17 November, 1984, Roorkee, India.
Mannan, M. A., & Ganapathy, C. (2002). Engineering properties of concrete with oil palm shell as coarse aggregate. Construction and Building Materials, 16(1), 29–34. doi:10.1016/S0950-0618(01)00030-7.
Ge, Z., Wang, H., Zhang, K., & Li, P. C. (2012). Investigation on the properties of plastic mortar. Shandong Daxue Xuebao (GongxueBan), 42(1), 106-108.
Siddique, R., Khatib, J., & Kaur, I. (2008). Use of recycled plastic in concrete: A review. Waste Management, 28(10), 1835–1852. doi:10.1016/j.wasman.2007.09.011.
Jo, B. W., Park, S. K., & Park, J. C. (2008). Mechanical properties of polymer concrete made with recycled PET and recycled concrete aggregates. Construction and Building Materials, 22(12), 2281–2291. doi:10.1016/j.conbuildmat.2007.10.009.
Rebeiz, K. S. (1995). Time-temperature properties of polymer concrete using recycled PET. Cement and Concrete Composites, 17(2), 119–124. Doi:10.1016/0958-9465(94)00004-I.
Tawfik, M. E., & Eskander, S. B. (2006). Polymer concrete from marble wastes and recycled poly(ethylene terephthalate). Journal of Elastomers and Plastics, 38(1), 65–79. doi:10.1177/0095244306055569.
Reis, J. M. L. (2011). Effect of aging on the fracture mechanics of unsaturated polyester based on recycled PET polymer concrete. Materials Science and Engineering A, 528(6), 3007–3009. doi:10.1016/j.msea.2010.12.073.
Ge, Z., Huang, D., Sun, R., & Gao, Z. (2014). Properties of plastic mortar made with recycled polyethylene terephthalate. Construction and Building Materials, 73, 682–687. doi:10.1016/j.conbuildmat.2014.10.005.
Jo, B.-W., Tae, G.-H., & Kim, C.-H. (2007). Uniaxial creep behavior and prediction of recycled-PET polymer concrete. Construction and Building Materials, 21(7), 1552–1559. doi:10.1016/j.conbuildmat.2005.10.003.
Miranda Vidales, J. M., Narváez Hernández, L., Tapia López, J. I., Martínez Flores, E. E., & Hernández, L. S. (2014). Polymer mortars prepared using a polymeric resin and particles obtained from waste pet bottle. Construction and Building Materials, 65, 376–383. doi:10.1016/j.conbuildmat.2014.04.114.
Yao, Z., Zhang, X., Ge, Z., Jin, Z., Han, J., & Pan, X. (2015). Mix proportion design and mechanical properties of recycled PET concrete. Journal of Testing and Evaluation, 43(2), 344–352. doi:10.1520/JTE20140059.
Mahdi, F., Abbas, H., & Khan, A. A. (2010). Strength characteristics of polymer mortar and concrete using different compositions of resins derived from post-consumer PET bottles. Construction and Building Materials, 24(1), 25–36. doi:10.1016/j.conbuildmat.2009.08.006.
Al-Ahmed, A. H. A., Ibrahim, F. H., Allawi, A. A., & El-Zohairy, A. (2022). Behavior of One-Way Reinforced Concrete Slabs with Polystyrene Embedded Arched Blocks. Buildings, 12(3), 331. doi:10.3390/buildings12030331.
Abishek, V., & Iyappan, G. R. (2021). Study on flexural behavior of bubble deck slab strengthened with FRP. Journal of Physics: Conference Series, 2040(1), 12018. doi:10.1088/1742-6596/2040/1/012018.
Orientilize, M., Rastandi, J. I., Aries C, R. M. D., Niken P, M., Adi S.S, K., & Abimantrana, A. (2021). Experimental Study of Hollow-core Slab Containing Waste PET Bottles. Makara Journal of Technology, 25(1), 48. doi:10.7454/mst.v25i1.3677.
Mahdi, A. A., & Ismael, M. A. (2020). Flexural behavior and sustainability analysis of hollow-core R.C. One-way slabs. 3rd International Conference on Engineering Technology and Its Applications, 100–105. doi:10.1109/IICETA50496.2020.9318843.
Yaagoob, A. H., & Harba, I. S. (2020). Behavior of Self Compacting Reinforced Concrete One Way Bubble Deck Slab. Al-Nahrain Journal for Engineering Sciences, 23(1), 1–11. doi:10.29194/njes.23010001.
Ali, M. S., & Babu, S. A. (2019). A Structural Study on Bubble Deck Slab and Its Properties. International Journal of Research & Review, 6(10), 352-357.
Thomas, A., Febeena, K. K., Jahfar, P. A., Baby, A., & Tech, M. (2019). an Experimental Study on Flexural Strength of Bubble Deck Slab. International Research Journal of Engineering and Technology, 06(05), 5804–5809.
Turan, F., & İşgüzar, T. (2022). Experimental and statistical analysis of flexural behavior of glass fiber reinforced polyester (GFRP) molded grating panels. The Journal of the Textile Institute, 1-8. doi:10.1080/00405000.2022.2131310.
Dheepan, K. R., Saranya, S., & Aswini, S. (2017). Experimental study on bubble deck slab using polypropylene balls. International Journal of Engineering Development and Research, 5(4), 716-721.
Amoa-Mensah, K. (2016). Building Estimating Manual for West Africa (3rd Ed.). Construction Industry Efficiency Improvement Group (CIEIG), Kumasi, Ghana.
DOI: 10.28991/CEJ-2023-09-03-016
Refbacks
- There are currently no refbacks.
Copyright (c) 2023 Donald Kwabena Dadzie, A. K. Kaliluthin
This work is licensed under a Creative Commons Attribution 4.0 International License.