Implications of Palm Kernel Shell-Filled Plastic Bottles on the Structural Behavior of Concrete Slab

Donald Kwabena Dadzie, A. K. Kaliluthin

Abstract


The implications of palm kernel shell (PKS)-filled plastic bottles on the structural behaviour of concrete slabs were carried out by comparing the flexural performance of conventional solid concrete slabs to concrete slabs incorporated with plastic bottles filled with palm kernel shells and placed vertically, horizontally, and diagonally at the neutral axis of the slab as per Bubble Deck Slab technology. One-way slab specimens of size 700 × 300 × 150 mm thick were produced and subjected to a four-point flexural load test. Findings from the study indicated that: (1) The PKS-filled bottle slabs deflected more than the conventional solid slab, hence making them more flexible than the conventional slabs and, as such, giving the occupants enough time to evacuate. (2) The flexural strengths of the PKS-filled bottle slabs exceeded those of conventional slabs by 18.3% and 10.9%, respectively, for five and ten percentages of the volume of slab concrete occupied. (3) The condition of the PKS, either dry or saturated, coupled with the bottle arrangement (either vertical, horizontal, or diagonal), does not, however, cause any significant change to the performance of the PKS filled bottle slabs in terms of load carrying capacity, deflection, and strength.

 

Doi: 10.28991/CEJ-2023-09-03-016

Full Text: PDF


Keywords


Concrete Slab; Plastic Bottles; Environment; Flexural Strength; Deflection.

References


Sandanayake, M., Bouras, Y., Haigh, R., & Vrcelj, Z. (2020). Current sustainable trends of using waste materials in concrete—a decade review. Sustainability (Switzerland), 12(22), 1–38. doi:10.3390/su12229622

United Nations Environment Programme. (2018). Single-use plastics, a roadmap for sustainability. United Nations Environment Programme, New York, United States. Available online: https://www.unenvironment.org/resources/report/single-use-plastics-roadmap-sustainability (accessed on January 2023).

Abergel, T., Dean, B., & Dulac, J. (2017). Towards a zero-emission, efficient, and resilient buildings and construction sector: Global Status Report 2017. UN Environment and International Energy Agency, Paris, France.

Okpala, D. C. (1990). Palm kernel shell as a lightweight aggregate in concrete. Building and Environment, 25(4), 291–296. doi:10.1016/0360-1323(90)90002-9

Pantzaris, T. P., & Mohd Jaafar, A. (2002). Techno-economic aspects of palm oil kernel meal as an animal feed. Palmas (Colombia), 53-61.

Olanipekun, E. A., Olusola, K. O., & Ata, O. (2006). A comparative study of concrete properties using coconut shell and palm kernel shell as coarse aggregates. Building and Environment, 41(3), 297–301. doi:10.1016/j.buildenv.2005.01.029

Teo, D. C. L., Mannan, M. A., & Kurian, J. V. (2006). Flexural behaviour of reinforced lightweight concrete beams made with oil palm shell (OPS). Journal of Advanced Concrete Technology, 4(3), 459–468. doi:10.3151/jact.4.459

Ramlee, N. A., Jawaid, M., Zainudin, E. S., & Yamani, S. A. K. (2019). Tensile, physical and morphological properties of oil palm empty fruit bunch/sugarcane bagasse fibre reinforced phenolic hybrid composites. Journal of Materials Research and Technology, 8(4), 3466–3474. doi:10.1016/j.jmrt.2019.06.016

Kukarni, V. P., Gaikwad, S. K. B., & Kumar, B. (2013). Comparative study on coconut shell aggregate with conventional concrete. International Journal of Engineering and Innovative Technology, 2(12), 67-70.

Basri, H. B., Mannan, M. A., & Zain, M. F. M. (1999). Concrete using waste oil palm shells as aggregate. Cement and Concrete Research, 29(4), 619–622. doi:10.1016/S0008-8846(98)00233-6

Amu, O. O., Adeyeri, J. B., Haastrup, A. O., & Eboru, A. A. (2008). Effects of Palm Kernel Shells in Lateritic Soil for Asphalt Stabilization. Research Journal of Environmental Sciences, 2(2), 132–138. doi:10.3923/rjes.2008.132.138

Ndoke, P. N. (2006). Performance of palm kernel shells as a partial replacement for coarse aggregate in asphalt concrete. Leonardo Electronic Journal of Practices and Technologies, 5(9), 145-152.

Olutoge, F. A. (2010). Investigations on Sawdust and Palm Kernel Shells as Aggregate Replacement. ARPN Journal of Engineering and Applied Sciences, 5(4), 7–13.

Danso, H. (2013). Building Houses with Locally Available Materials in Ghana: Benefits and Problems. International Journal of Science and Technology, 2(2), 225–231.

Abdullah, N., & Sulaim, F. (2013). The Oil Palm Wastes in Malaysia. Biomass Now - Sustainable Growth and Use. InTech, London, United Kingdom. doi:10.5772/55302

Ramezanianpour, A. A., Mahdikhani, M., & Ahmadibeni, G. (2009). The effect of rice husk ash on mechanical properties and durability of sustainable concretes. International Journal of Civil Engineering, 7(2), 83–91.

Nimityongskul, P., & Daladar, T. U. (1995). Use of coconut husk ash, corn cob ash and peanut shell ash as cement replacement. Journal of Ferrocement, 25(1), 35–44.

Slim, J. A., & Wakefield, R. W. (1991). Utilisation of sewage sludge in the manufacture of clay bricks. Water SA, 17(3), 197–202.

Ghansah, B., Mahunu, G. K., Ansah, E. K., & Benuwa, B. B. (2015). Impact of Pet Bottles Disposal and Management Mechanisms in Selected Urban Cities in Ghana. Journal of Multidisciplinary Engineering Science and Technology, 2(6), 1289-1297.

Alengaram, U. J., Mahmud, H., & Jumaat, M. Z. (2010). Comparison of mechanical and bond properties of oil palm kernel shell concrete with normal weight concrete. International Journal of Physical Sciences, 5(8), 1231–1239.

Osei, D. Y., & Jackson, E. N. (2012). Experimental Study on Palm Kernel Shells as Coarse Aggregates in Concrete. International Journal of Scientific & Engineering Reasearch, 3(8), 1–6.

Olusola, K. O., & Babafemi, A. J. (2013). Effect of coarse aggregate sizes and replacement levels on the strength of palm kernel shell (PKS) concrete. Civil Engineering Dimension, 15(1), 43-50. doi:10.9744/ced.15.1.43-50.

Yew, M. K., Bin Mahmud, H., Ang, B. C., & Yew, M. C. (2014). Effects of Oil Palm Shell Coarse Aggregate Species on High Strength Lightweight Concrete. The Scientific World Journal, 2014, 1–12. doi:10.1155/2014/387647.

Foong, K. Y., Alengaram, U. J., Jumaat, M. Z., & Mo, K. H. (2015). Enhancement of the mechanical properties of lightweight oil palm shell concrete using rice husk ash and manufactured sand. Journal of Zhejiang University: Science A, 16(1), 59–69. doi:10.1631/jzus.A1400175.

Mo, K. H., Alengaram, U. J., & Jumaat, M. Z. (2015). Experimental Investigation on the Properties of Lightweight Concrete Containing Waste Oil Palm Shell Aggregate. Procedia Engineering, 125, 587–593. doi:10.1016/j.proeng.2015.11.065.

Aslam, M., Shafigh, P., Jumaat, M. Z., & Lachemi, M. (2016). Benefits of using blended waste coarse lightweight aggregates in structural lightweight aggregate concrete. Journal of Cleaner Production, 119, 108–117. doi:10.1016/j.jclepro.2016.01.071.

Adewuyi, A. P., & Adegoke, T. (2008). Exploratory Study of Periwinkle Shells as Coarse Aggregates in Concrete Works. ARPN Journal of Engineering and Applied Sciences, 3(6), 1–5.

Agbede, O. I., & Manasseh, J. (2009). Suitability of periwinkle shell as partial replacement for river gravel in concrete. Leonardo Electronic Journal of Practices and Technologies, 15(2), 59-66.

Osadebe, N. N., & Ibearugbulem, O. M. (2009). Application of Scheffe’s simplex model in optimizing compressive strength of periwinkle shell granite concrete. The Heartland Engineer, 4(1), 27–38.

Shafigh, P., Jumaat, M. Z., & Mahmud, H. (2011). Oil palm shell as a lightweight aggregate for production high strength lightweight concrete. Construction and Building Materials, 25(4), 1848–1853. doi:10.1016/j.conbuildmat.2010.11.075.

Alengaram, U. J., Muhit, B. A. Al, & Jumaat, M. Z. Bin. (2013). Utilization of oil palm kernel shell as lightweight aggregate in concrete - A review. Construction and Building Materials, 38, 161–172. doi:10.1016/j.conbuildmat.2012.08.026.

Imam, H. B. U., & Usman, N. (2014). Compressive strength of concrete using palm oil nut shell as light weight aggregate. Journal of Civil Engineering and Environmental Technology (JCEET), 15.

Gibigaye, M., Godonou, G. F., Katte, R., & Degan, G. (2017). Structured mixture proportioning for oil palm kernel shell concrete. Case Studies in Construction Materials, 6, 219–224. doi:10.1016/j.cscm.2017.04.004.

Yusuf, I. T., Babatunde, Y. O., & Abdullahi, A. (2018). Investigation on the Flexural Strength of Palm Kernel Shell Concrete for Structural Applications. Malaysian Journal of Civil Engineering, 30(2), 268–281. doi:10.11113/mjce.v30n2.479.

Khankhaje, E., Rafieizonooz, M., Salim, M. R., Mirza, J., Salmiati, & Hussin, M. W. (2017). Comparing the effects of oil palm kernel shell and cockle shell on properties of pervious concrete pavement. International Journal of Pavement Research and Technology, 10(5), 383–392. doi:10.1016/j.ijprt.2017.05.003.

Islam, M. M. U., Mo, K. H., Alengaram, U. J., & Jumaat, M. Z. (2016). Mechanical and fresh properties of sustainable oil palm shell lightweight concrete incorporating palm oil fuel ash. Journal of Cleaner Production, 115(1), 307–314. doi:10.1016/j.jclepro.2015.12.051.

Khankhaje, E., Salim, M. R., Mirza, J., Hussin, M. W., & Rafieizonooz, M. (2016). Properties of sustainable lightweight pervious concrete containing oil palm kernel shell as coarse aggregate. Construction and Building Materials, 126, 1054–1065. doi:10.1016/j.conbuildmat.2016.09.010.

Oyedepo, O. J., Olanitori, L. M., & Akande, S. P. (2015). Performance of coconut shell ash and palm kernel shell ash as partial replacement for cement in concrete. Journal of Building Materials and Structures, 2(1), 18–24. doi:10.34118/jbms.v2i1.16.

Oti, O. P., Nwaigwe, K. N., & Okereke, N. A. A. (2017). Assessment of palm kernel shell as a composite aggregate in concrete. Agricultural Engineering International: CIGR Journal, 19(2), 34–41.

Abang, A., Abang, A., Abdus Salam, S. K. & Abang A. R. (1984) Basic strength properties of lightweight concrete using agricultural wastes as aggregates. International Conference on Low-Cost Housing for Developing Countries, 12-17 November, 1984, Roorkee, India.

Mannan, M. A., & Ganapathy, C. (2002). Engineering properties of concrete with oil palm shell as coarse aggregate. Construction and Building Materials, 16(1), 29–34. doi:10.1016/S0950-0618(01)00030-7.

Ge, Z., Wang, H., Zhang, K., & Li, P. C. (2012). Investigation on the properties of plastic mortar. Shandong Daxue Xuebao (GongxueBan), 42(1), 106-108.

Siddique, R., Khatib, J., & Kaur, I. (2008). Use of recycled plastic in concrete: A review. Waste Management, 28(10), 1835–1852. doi:10.1016/j.wasman.2007.09.011.

Jo, B. W., Park, S. K., & Park, J. C. (2008). Mechanical properties of polymer concrete made with recycled PET and recycled concrete aggregates. Construction and Building Materials, 22(12), 2281–2291. doi:10.1016/j.conbuildmat.2007.10.009.

Rebeiz, K. S. (1995). Time-temperature properties of polymer concrete using recycled PET. Cement and Concrete Composites, 17(2), 119–124. Doi:10.1016/0958-9465(94)00004-I.

Tawfik, M. E., & Eskander, S. B. (2006). Polymer concrete from marble wastes and recycled poly(ethylene terephthalate). Journal of Elastomers and Plastics, 38(1), 65–79. doi:10.1177/0095244306055569.

Reis, J. M. L. (2011). Effect of aging on the fracture mechanics of unsaturated polyester based on recycled PET polymer concrete. Materials Science and Engineering A, 528(6), 3007–3009. doi:10.1016/j.msea.2010.12.073.

Ge, Z., Huang, D., Sun, R., & Gao, Z. (2014). Properties of plastic mortar made with recycled polyethylene terephthalate. Construction and Building Materials, 73, 682–687. doi:10.1016/j.conbuildmat.2014.10.005.

Jo, B.-W., Tae, G.-H., & Kim, C.-H. (2007). Uniaxial creep behavior and prediction of recycled-PET polymer concrete. Construction and Building Materials, 21(7), 1552–1559. doi:10.1016/j.conbuildmat.2005.10.003.

Miranda Vidales, J. M., Narváez Hernández, L., Tapia López, J. I., Martínez Flores, E. E., & Hernández, L. S. (2014). Polymer mortars prepared using a polymeric resin and particles obtained from waste pet bottle. Construction and Building Materials, 65, 376–383. doi:10.1016/j.conbuildmat.2014.04.114.

Yao, Z., Zhang, X., Ge, Z., Jin, Z., Han, J., & Pan, X. (2015). Mix proportion design and mechanical properties of recycled PET concrete. Journal of Testing and Evaluation, 43(2), 344–352. doi:10.1520/JTE20140059.

Mahdi, F., Abbas, H., & Khan, A. A. (2010). Strength characteristics of polymer mortar and concrete using different compositions of resins derived from post-consumer PET bottles. Construction and Building Materials, 24(1), 25–36. doi:10.1016/j.conbuildmat.2009.08.006.

Al-Ahmed, A. H. A., Ibrahim, F. H., Allawi, A. A., & El-Zohairy, A. (2022). Behavior of One-Way Reinforced Concrete Slabs with Polystyrene Embedded Arched Blocks. Buildings, 12(3), 331. doi:10.3390/buildings12030331.

Abishek, V., & Iyappan, G. R. (2021). Study on flexural behavior of bubble deck slab strengthened with FRP. Journal of Physics: Conference Series, 2040(1), 12018. doi:10.1088/1742-6596/2040/1/012018.

Orientilize, M., Rastandi, J. I., Aries C, R. M. D., Niken P, M., Adi S.S, K., & Abimantrana, A. (2021). Experimental Study of Hollow-core Slab Containing Waste PET Bottles. Makara Journal of Technology, 25(1), 48. doi:10.7454/mst.v25i1.3677.

Mahdi, A. A., & Ismael, M. A. (2020). Flexural behavior and sustainability analysis of hollow-core R.C. One-way slabs. 3rd International Conference on Engineering Technology and Its Applications, 100–105. doi:10.1109/IICETA50496.2020.9318843.

Yaagoob, A. H., & Harba, I. S. (2020). Behavior of Self Compacting Reinforced Concrete One Way Bubble Deck Slab. Al-Nahrain Journal for Engineering Sciences, 23(1), 1–11. doi:10.29194/njes.23010001.

Ali, M. S., & Babu, S. A. (2019). A Structural Study on Bubble Deck Slab and Its Properties. International Journal of Research & Review, 6(10), 352-357.

Thomas, A., Febeena, K. K., Jahfar, P. A., Baby, A., & Tech, M. (2019). an Experimental Study on Flexural Strength of Bubble Deck Slab. International Research Journal of Engineering and Technology, 06(05), 5804–5809.

Turan, F., & İşgüzar, T. (2022). Experimental and statistical analysis of flexural behavior of glass fiber reinforced polyester (GFRP) molded grating panels. The Journal of the Textile Institute, 1-8. doi:10.1080/00405000.2022.2131310.

Dheepan, K. R., Saranya, S., & Aswini, S. (2017). Experimental study on bubble deck slab using polypropylene balls. International Journal of Engineering Development and Research, 5(4), 716-721.

Amoa-Mensah, K. (2016). Building Estimating Manual for West Africa (3rd Ed.). Construction Industry Efficiency Improvement Group (CIEIG), Kumasi, Ghana.


Full Text: PDF

DOI: 10.28991/CEJ-2023-09-03-016

Refbacks

  • There are currently no refbacks.




Copyright (c) 2023 Donald Kwabena Dadzie, A. K. Kaliluthin

Creative Commons License
This work is licensed under a Creative Commons Attribution 4.0 International License.
x
Message