Airborne Microbial Quality Assessment in the Educational Buildings during the COVID-19 Pandemic

Muhammad Asril, Salsabila Sugiarto, Alfian Zurfi


Rooms with pollutants have a poor impact of 2-5 times greater than outdoors. The lecture hall had the potential to experience a decrease in air quality. This study was conducted to assess microbiological air quality in the general lecture building I Institut Teknologi Sumatra, Lampung, Indonesia, during the COVID-19 pandemic and its relationship with environmental conditions. This study was conducted using a settling sampling technique to count the number of bacteria and fungi in the air. Samples were collected twice daily for five working days. The results showed that the highest concentrations of bacteria and fungi were found at the wifi corner location, at 36.7–1237.2 CFU/m3 and 225.4–1431.2 CFU/m3, respectively. The highest average concentrations of bacteria and fungi at the wifi corner location were found in the afternoon at 479.1 ± 438.1 CFU/m3 and 800 ± 548.4 CFU/m3, respectively. The three locations did not meet the standards of room suitability for humans with immunodeficiencies based on the ACGIH. The location of the wifi corner did not meet the standards of the Minister of Manpower of the Republic of Indonesia No. 5 of 2018 and the WHO regarding microbial standards in the room. The highest value of the Global Microbial Contamination Index (GIMC/m3) was found in the wifi corner (G4: ≥2000 – ≤4000), which is closely related to population density and ventilation. Environmental factors influence the density of bacteria and fungi at the sampling sites. The relative humidity strongly influenced the concentration of fungi. In addition to relative humidity, bacterial density is also affected by light intensity and the number of people. This indicates that despite restrictions on activities during the COVID-19 pandemic, the room at GKU 1 did not meet the eligibility requirements for students with immune disorders.


Doi: 10.28991/CEJ-2023-09-01-09

Full Text: PDF


Indoor Air; Airborne Microorganism; Education Buildings; Microbiological Index; Environmental Factors.


Pereira, M. L., Knibbs, L. D., He, C., Grzybowski, P., Johnson, G. R., Huffman, J. A., Bell, S. C., Wainwright, C. E., Matte, D. L., Dominski, F. H., Andrade, A., & Morawska, L. (2017). Sources and dynamics of fluorescent particles in hospitals. Indoor Air, 27(5), 988–1000. doi:10.1111/ina.12380.

Kuddus, M., Khatoon, F., Saleem, M., Anwar, S., Shahid, S. M. A., Ginawi, T., ... & Kausar, M. A. (2021). Assessment of bio-contaminants during COVID-19 outbreak from the indoor environment of Hail city, Kingdom of Saudi Arabia. Bioinformation, 17(5), 541. doi:10.6026/97320630017541.

Environmental Protection Agency. (1996). Indoor air quality basics for schools. U.S. Environmental Protection Agency, Indoor Environments Division, Office of Radiation and Indoor Air, Washington, United States.

Mentese, S., Mirici, N. A., Otkun, M. T., Bakar, C., Palaz, E., Tasdibi, D., Cevizci, S., & Cotuker, O. (2015). Association between respiratory health and indoor air pollution exposure in Canakkale, Turkey. Building and Environment, 93(P1), 72–83. doi:10.1016/j.buildenv.2015.01.023.

Gizaw, Z., Gebrehiwot, M., & Yenew, C. (2016). High bacterial load of indoor air in hospital wards: The case of University of Gondar teaching hospital, Northwest Ethiopia. Multidisciplinary Respiratory Medicine, 11(1), 1–7. doi:10.1186/s40248-016-0061-4.

Stetzenbach, L. D., Buttner, M. P., & Cruz, P. (2004). Detection and enumeration of airborne biocontaminants. Current Opinion in Biotechnology, 15(3), 170–174. doi:10.1016/j.copbio.2004.04.009.

Yu Singh, J., Yu, C. W. F., & Jeong Tai Kim. (2010). Building Pathology, Investigation of Sick Buildings —Toxic Moulds. Indoor and Built Environment, 19(1), 40–47. doi:10.1177/1420326x09358808.

Ross, M. A., Curtis, L., Scheff, P. A., Hryhorczuk, D. O., Ramakrishnan, V., Wadden, R. A., & Persky, V. W. (2000). Association of asthma symptoms and severity with indoor bioaerosols. Allergy, 55(8), 705–711. doi:10.1034/j.1398-9995.2000.00551.x.

Kalogerakis, N., Paschali, D., Lekaditis, V., Pantidou, A., Eleftheriadis, K., & Lazaridis, M. (2005). Indoor air quality - Bioaerosol measurements in domestic and office premises. Journal of Aerosol Science, 36(5–6), 751–761. doi:10.1016/j.jaerosci.2005.02.004.

Adams, R. I., Miletto, M., Lindow, S. E., Taylor, J. W., & Bruns, T. D. (2014). Airborne bacterial communities in residences: Similarities and differences with fungi. PLoS ONE, 9(3), 1–7. doi:10.1371/journal.pone.0091283.

Ghosh, B., Lal, H., & Srivastava, A. (2015). Review of bioaerosols in indoor environment with special reference to sampling, analysis and control mechanisms. Environment International, 85, 254–272. doi:10.1016/j.envint.2015.09.018.

Prussin, A. J., & Marr, L. C. (2015). Sources of airborne microorganisms in the built environment. Microbiome, 3(1), 1-10. doi:10.1186/s40168-015-0144-z.

Tham, K. W. (2016). Indoor air quality and its effects on humans—A review of challenges and developments in the last 30 years. Energy and Buildings, 130, 637–650. doi:10.1016/j.enbuild.2016.08.071.

Meadow, J. F., Altrichter, A. E., Kembel, S. W., Kline, J., Mhuireach, G., Moriyama, M., Northcutt, D., O’Connor, T. K., Womack, A. M., Brown, G. Z., Green, J. L., & Bohannan, B. J. M. (2014). Indoor airborne bacterial communities are influenced by ventilation, occupancy, and outdoor air source. Indoor Air, 24(1), 41–48. doi:10.1111/ina.12047.

Hussin, N. H. M., Sann, L. M., Shamsudin, M. N., & Hashim, Z. (2011). Characterization of bacteria and fungi bioaerosol in the indoor air of selected primary schools in Malaysia. Indoor and Built Environment, 20(6), 607–617. doi:10.1177/1420326X11414318.

Li, X., Qiu, Y., Yu, A., Shi, W., Chen, G., Zhang, Z., & Liu, D. (2015). Characteristics of airborne Staphylococcus aureus (including MRSA) in Chinese public buildings. Aerobiologia, 31(1), 11–19. doi:10.1007/s10453-014-9342-6.

Osman, M., Awad, A. H., Ibrahim, Y., Ahmed, Y., Abo-Elnasr, A., & Saeed, Y. (2017). Air microbial contamination and factors affecting its occurrence in certain book libraries in Egypt. Egyptian Journal of Botany, 57(1), 93–118. doi:10.21608/ejbo.2016.277.1007.

Erlandson, G., Magzamen, S., Carter, E., Sharp, J. L., Reynolds, S. J., & Schaeffer, J. W. (2019). Characterization of indoor air quality on a college campus: A pilot study. International Journal of Environmental Research and Public Health, 16(15), 1–15. doi:10.3390/ijerph16152721.

Haleem, A. M., Hassan, D. M. A., & Al-Hiyaly, S. A. K. (2013). Comparative Assessment of Microbial Contamination from Swabs Collected within University Facilities. Journal of Health Science, 3(2), 25–28. doi:10.5923/J.HEALTH.20130302.04.

Ross, A. A., & Neufeld, J. D. (2015). Microbial biogeography of a university campus. Microbiome, 3(1). doi:10.1186/s40168-015-0135-0.

Xiuqin, L., Zhiguo, F., & Chanjuan, G. (2012). Assessment of culturable airborne fungi in a university campus in Hangzhou, southeast China. African Journal of Microbiology Research, 6(6), 1197–1205. doi:10.5897/ajmr11.1414.

Di Giulio, M., Grande, R., Di Campli, E., Di Bartolomeo, S., & Cellini, L. (2010). Indoor air quality in university environments. Environmental Monitoring and Assessment, 170(1–4), 509–517. doi:10.1007/s10661-009-1252-7.

Stryjakowska-Sekulska, M., Piotraszewska-Pajak, A., Szyszka, A., Nowicki, M., & Filipiak, M. (2007). Microbiological quality of indoor air in university rooms. Polish Journal of Environmental Studies, 16(4), 623.

Onet, A., Ilies, D. C., Buhas, S., Rahota, D., Ilies, A., Baias, S., Marcu, F., & Herman, G. V. (2018). Microbial air contamination in indoor environment of university sports hall. Journal of Environmental Protection and Ecology, 19(2), 694–703.

Zulfakar, S. S., Abu Hassan, M. F., & Abu Bakar, N. F. (2019). Microbiological Assessment of Selected Laboratories at a Local University in Malaysia. Jurnal Sains Kesihatan Malaysia, 17(SI), 119–126. doi:10.17576/jskm-2019-14.

Kic, P., & Růžek, L. (2014). The microbiological environment in specific rooms of a university campus. Agronomy Research, 12(3), 837-842.

Hayleeyesus, S. F., & Manaye, A. M. (2014). Microbiological quality of indoor air in University libraries. Asian Pacific Journal of Tropical Biomedicine, 4(Suppl 1), S312–S317. doi:10.12980/APJTB.4.2014C807.

Jurado, S. R., Bankoff, A. D. P., & Sanchez, A. (2014). Indoor air quality in Brazilian universities. International Journal of Environmental Research and Public Health, 11(7), 7081–7093. doi:10.3390/ijerph110707081.

Idris, S.A.A., Hanafiah, M. M., Ismail, M., Abdullah, S., & Khan, M. F. (2020). Laboratory air quality and microbiological contamination in a university building. Arabian Journal of Geosciences, 13(13), 1-9. doi:10.1007/s12517-020-05564-8.

Kembel, S. W., Jones, E., Kline, J., Northcutt, D., Stenson, J., Womack, A. M., Bohannan, B. J. M., Brown, G. Z., & Green, J. L. (2012). Architectural design influences the diversity and structure of the built environment microbiome. ISME Journal, 6(8), 1469–1479. doi:10.1038/ismej.2011.211.

Vilcekova, S., Meciarova, L., Burdova, E. K., Katunska, J., Kosicanova, D., & Doroudiani, S. (2017). Indoor environmental quality of classrooms and occupants’ comfort in a special education school in Slovak Republic. Building and Environment, 120, 29–40. doi:10.1016/j.buildenv.2017.05.001.

Viegas, C., Pimenta, R., Dias, M., Gomes, B., Brito, M., Aranha Caetano, L., Carolino, E., & Gomes, A. Q. (2021). Microbiological contamination assessment in higher education institutes. Atmosphere, 12(8), 1–19. doi:10.3390/atmos12081079.

PermenakerRI. (2018). Regulation of the Minister of Manpower of the Republic of Indonesia Number 5 of 2018 concerning Occupational Safety and Health in the Work Environment. Minister of Manpower of the Republic of Indonesia in 2018 Minister of Manpower of the Republic of Indonesia, Jakarta, Indonesia. (In Indonesia).

ACGIH. (1989). Guidelines for the assessment about aerosols in the indoor environment. American Conference of Governmental Industrial Hygienists, Cincinnati, United States.

World Health Organization. (1990). Indoor air quality: biological contaminants. Report on a WHO Meeting, World Health Organization (WHO), Copenhagen, Denmark.

AFL Texas. (2020). Air Sampling by Settle/Sedimentation Plate Method. Texas, United States

Pasquarella, C., Pitzurra, O., & Savino, A. (2000). The index of microbial air contamination. Journal of Hospital Infection, 46(4), 241–256. doi:10.1053/jhin.2000.0820.

Maturin, L., & Peeler, J. T. (2001). BAM: Aerobic plate count. US Food and Drug Administration, Silver Spring, Maryland, United States.

Li, Y., Ge, Y., Wu, C., Guan, D., Liu, J., & Wang, F. (2020). Assessment of culturable airborne bacteria of indoor environments in classrooms, dormitories and dining hall at university: a case study in China. Aerobiologia, 36(3), 313–324. doi:10.1007/s10453-020-09633-z.

Awad, A. H., & Mawla, H. A. (2012). Sedimentation with the omeliansky formula as an accepted technique for quantifying airborne fungi. Polish Journal of Environmental Studies, 21(6), 1539–1541.

Dang, D. Y. N., Vuong, H. N., Nguyen, T. T., & Phan, T. T. T. (2020). Microbiological contamination of indoor air in university classrooms (Case study: University of Science - Vietnam National University, Ho Chi Minh City). Vietnam Journal of Science, Technology and Engineering, 62(4), 30–35. doi:10.31276/vjste.62(4).30-35.

Sugiyono, P.D. (2018). Quantitative, qualitative, and R&D research methods. ALFABETA, Bandung, Indonesia. (In Indonesian).

SNI 16-7062-2004. (2004). Measurement of Light Intensity in the Workplace. Standar Nasional Indonesia, Jakarta, Indonesia. (In Indonesian).

Oivola, M., Alm, S., Reponen, T., Kolari, S., & Nevalainen, A. (2002). Personal exposures and micro-environmental concentrations of particles and bioaerosols. Journal of Environmental Monitoring, 4(1), 166–174. doi:10.1039/b108682k.

Kalwasińska, A., Burkowska, A., & Wilk, I. (2012). Microbial air contamination in indoor environment of a University Library. Annals of Agricultural and Environmental Medicine, 19(1), 25–29.

Pramaningsih, V., Rusdi, Isworo, S., & Yuliawati, R. (2022). Indoor air quality of physical and microbiological in Universitas Muhammadiyah Kalimantan Timur, Indonesia. Indonesian Journal of Environmental Management and Sustainability, 6(1), 168–174. doi:10.26554/ijems.2022.6.1.168-174.

Hayleeyesus, S. F., Ejeso, A., & Derseh, F. A. (2015). Quantitative Assessment of Bio-Aerosols Contamination in Indoor Air of University Dormitory Rooms. International Journal of Health Sciences, 9(3), 247–254. doi:10.12816/0024691.

Sadyś, M., Kennedy, R., & West, J. S. (2016). Potential impact of climate change on fungal distributions: analysis of 2 years of contrasting weather in the UK. Aerobiologia, 32(1), 127–137. doi:10.1007/s10453-015-9402-6.

Schulz, J., Formosa, L., Seedorf, J., & Hartung, J. (2011). Measurement of culturable airborne staphylococci downwind from a naturally ventilated broiler house. Aerobiologia, 27(4), 311–318. doi:10.1007/s10453-011-9202-6.

Darquenne, C. (2012). Aerosol deposition in health and disease. Journal of Aerosol Medicine and Pulmonary Drug Delivery, 25(3), 140–147. doi:10.1089/jamp.2011.0916.

Yamamoto, N., Bibby, K., Qian, J., Hospodsky, D., Rismani-Yazdi, H., Nazaroff, W. W., & Peccia, J. (2012). Particle-size distributions and seasonal diversity of allergenic and pathogenic fungi in outdoor air. ISME Journal, 6(10), 1801–1811. doi:10.1038/ismej.2012.30.

Grady, E. N., MacDonald, J., Liu, L., Richman, A., & Yuan, Z. C. (2016). Current knowledge and perspectives of Paenibacillus: A review. Microbial Cell Factories, 15(1), 1–18. doi:10.1186/s12934-016-0603-7.

Sharma, P. D. (2005). Fungi and allied organisms. Alpha Science International Ltd., Oxford, United Kingdom.

Awad, A. H., Saeed, Y., Hassan, Y., Fawzy, Y., & Osman, M. (2018). Air microbial quality in certain public buildings, Egypt: A comparative study. Atmospheric Pollution Research, 9(4), 617–626. doi:10.1016/j.apr.2017.12.014.

Grisoli, P., Albertoni, M., & Rodolfi, M. (2019). Application of airborne microorganism indexes in offices, gyms, and libraries. Applied Sciences (Switzerland), 9(6), 1–9. doi:10.3390/app9061101.

Bragoszewska, E., Biedroń, I., & Mainka, A. (2020). Microbiological air quality in a high school gym located in an urban area of Southern Poland-preliminary research. Atmosphere, 11(8), 1–13. doi:10.3390/ATMOS11080797.

Balocco, C., & Leoncini, L. (2020). Energy cost for effective ventilation and air quality for healthy buildings: Plant proposals for a historic building school reopening in the covid-19 era. Sustainability (Switzerland), 12(20), 1–16. doi:10.3390/su12208737.

Zender-Świercz, E., Telejko, M., Starzomska, M., & Łubek, A. (2019). The microbiology contaminants and microclimate parameters in the nursery building. International Journal of Environmental Science and Technology, 16(11), 6699–6704. doi:10.1007/s13762-019-02284-9.

Pitarma, R., Marques, G., & Ferreira, B. R. (2017). Monitoring Indoor Air Quality for Enhanced Occupational Health. Journal of Medical Systems, 41(2), 1–8. doi:10.1007/s10916-016-0667-2.

Enitan, Ihongbe, Ochei, Effedua, Adeyemi, & Phillips. (2017). Microbiological assessment of indoor air quality of some selected private primary schools in Ilishan- Remo, Ogun state, Nigeria. International Journal of Medical and Health Research, 3(6), 8–19.

Borrego, S., Guiamet, P., Gómez de Saravia, S., Batistini, P., Garcia, M., Lavin, P., & Perdomo, I. (2010). The quality of air at archives and the biodeterioration of photographs. International Biodeterioration and Biodegradation, 64(2), 139–145. doi:10.1016/j.ibiod.2009.12.005.

Reanprayoon, P., & Yoonaiwong, W. (2012). Airborne concentrations of bacteria and fungi in Thailand border market. Aerobiologia, 28(1), 49–60. doi:10.1007/s10453-011-9210-6.

Cole, E. C., & Cook, C. E. (1998). Characterization of infectious aerosols in health care facilities: An aid to effective engineering controls and preventive strategies. American Journal of Infection Control, 26(4), 453–464. doi:10.1016/S0196-6553(98)70046-X.

Karbowska-Berent, J., Górny, R. L., Strzelczyk, A. B., & Wlazło, A. (2011). Airborne and dust borne microorganisms in selected Polish libraries and archives. Building and Environment, 46(10), 1872–1879. doi:10.1016/j.buildenv.2011.03.007.

Schmidt, H., Thom, M., Wieprecht, S., Manz, W., & Gerbersdorf, S. (2018). The effect of light intensity and shear stress on microbial biostabilization and the community composition of natural biofilms. Research and Reports in Biology, Volume 9(9), 1–16. doi:10.2147/rrb.s145282.

Chen, Q., & Hildemann, L. M. (2009). The effects of human activities on exposure to particulate matter and bioaerosols in residential homes. Environmental Science and Technology, 43(13), 4641–4646. doi:10.1021/es802296j.

Bowers, R. M., McCubbin, I. B., Hallar, A. G., & Fierer, N. (2012). Seasonal variability in airborne bacterial communities at a high-elevation site. Atmospheric Environment, 50(2012), 41–49. doi:10.1016/j.atmosenv.2012.01.005.

Full Text: PDF

DOI: 10.28991/CEJ-2023-09-01-09


  • There are currently no refbacks.

Copyright (c) 2023 Muhammad Asril, Salsabila Sugiarto, Alfian Zurfi

Creative Commons License
This work is licensed under a Creative Commons Attribution 4.0 International License.