Numerical Analysis of Torsional Reinforcement of Concrete Beams in Unconventional by ANSYS Software

Thaer Jasim Mohammed, Khalid M. Breesem, Abeer F. Hussein

Abstract


In this study, a finite element analysis is conducted to study the behaviour of RC beams with different configurations of transverse reinforcement under torsion. These configurations of stirrups are traditional closed stirrups, circular spiral stirrups, and inclined rectangular spiral stirrups. The numerical torsional load values are compared with the experimental torsional load values from previous research. The numerical analysis determined by the ANSYS software shows a reasonable agreement with the experimental torsional load values. The numerical results demonstrate that the use of continuous rectangular spiral stirrups improved the torsional response compared to using another type of beam stirrup. Thus, numerical results show that continuous spiral stirrups are effective at increasing torsional capacity. It is also noted that the behaviour of these beams with continuous spiral stirrups is better than the behaviour of the beams with traditional stirrups. The beams with helical reinforcement, which are TB2, TB3, and TB4 spiral reinforcements, greatly enhanced the toughness. The equivalent stresses are 13.709, 13.728, 14.72, and 15.894 MPa, while the equivalent elastic strains are 0.00421, 0.00377, 0.00347, and 0.00539 mm/mm for the beams TB2, TB3, and TB4, respectively. The beam TB4 had the highest stress and strain value, so its strength improved its ductility properties. As a result, the stirrups' configurations enabled the detection of beam failure mechanisms by improving torsional behaviour when compared to the beam's traditional stirrups. As a result, this research adds more knowledge to the literature on the most effective spiral stirrups for transverse reinforcement to improve the torsional behaviour of beams.

 

Doi: 10.28991/CEJ-2023-09-01-04

Full Text: PDF


Keywords


Finite Element Analysis; RC Beam; Spiral Stirrups; Torsion.

References


Shen, K., Wan, S., Mo, Y. L., & Jiang, Z. (2018). Theoretical analysis on full torsional behavior of RC beams strengthened with FRP materials. Composite Structures, 183(1), 347–357. doi:10.1016/j.compstruct.2017.03.084.

Ganganagoudar, A., Mondal, T. G., & Suriya Prakash, S. (2016). Analytical and finite element studies on behavior of FRP strengthened RC beams under torsion. Composite Structures, 153, 876–885. doi:10.1016/j.compstruct.2016.07.014.

Hamid, N. A., Ibrahim, A., Adnan, A., & Ismail, M. H. (2018). Behaviour of smart reinforced concrete beam with super elastic shape memory alloy subjected to monotonic loading. AIP Conference Proceedings. doi:10.1063/1.5034565.

Karayannis, C. G., Chalioris, C. E., & Mavroeidis, P. D. (2005). Shear capacity of RC rectangular beams with continuous spiral transversal reinforcement. WIT Transactions on Modelling and Simulation, 41. doi:10.2495/CMEM050371.

Narule, G. N., & Sonawane, K. K. (2022). Flexural and shear cracking performance of strengthened RC rectangular beam with variable pattern of the BFRP strips. Innovative Infrastructure Solutions, 7(2), 1-16. doi:10.1007/s41062-022-00785-0.

Karayannis, C. G., & Chalioris, C. E. (2013). Shear tests of reinforced concrete beams with continuous rectangular spiral reinforcement. Construction and Building Materials, 46, 86–97. doi:10.1016/j.conbuildmat.2013.04.023.

De Corte, W., & Boel, V. (2013). Effectiveness of spirally shaped stirrups in reinforced concrete beams. Engineering Structures, 52, 667–675. doi:10.1016/j.engstruct.2013.03.032.

Shatarat, N., Katkhuda, H., Abdel-Jaber, M., & Alqam, M. (2016). Experimental investigation of reinforced concrete beams with spiral reinforcement in shear. Construction and Building Materials, 125, 585–594. doi:10.1016/j.conbuildmat.2016.08.070.

Mas, B., Cladera, A., & Ribas, C. (2016). Experimental study on concrete beams reinforced with pseudoelastic Ni-Ti continuous rectangular spiral reinforcement failing in shear. Engineering Structures, 127, 759–768. doi:10.1016/j.engstruct.2016.09.022.

Joshy, V., & Faisal, K. M. (2017). Experimental Study on the Behaviour of Spirally Reinforced SCC beams. International Journal of Engineering Research and General Science, 5(3), 96–105.

Shatarat, N., Mahmoud, H. M., & Katkhuda, H. (2018). Shear capacity investigation of self-compacting concrete beams with rectangular spiral reinforcement. Construction and Building Materials, 189, 640–648. doi:10.1016/j.conbuildmat.2018.09.046.

Eom, T. S., Kang, S. M., Park, H. G., Choi, T. W., & Jin, J. M. (2014). Cyclic loading test for reinforced concrete columns with continuous rectangular and polygonal hoops. Engineering Structures, 67, 39–49. doi:10.1016/j.engstruct.2014.02.023.

Chalioris, C. E., & Karayannis, C. G. (2013). Experimental investigation of RC beams with rectangular spiral reinforcement in torsion. Engineering Structures, 56, 286–297. doi:10.1016/j.engstruct.2013.05.003.

Habeeb Askandar, N., & Darweesh Mahmood, A. (2020). Torsional Strengthening of RC Beams with Near-Surface Mounted Steel Bars. Advances in Materials Science and Engineering, 2020(1), 1–16. doi:10.1155/2020/1492980.

Katkhuda, H. N., Shatarat, N. K., & AL-Rakhameen, A. A. (2019). Improving the Torsional Capacity of Reinforced Concrete Beams with Spiral Reinforcement. International Journal of Structural and Civil Engineering Research, 113–118. doi:10.18178/ijscer.8.2.113-118.

Mohammed, T. J., Abu Bakar, B. H., Bunnori, N. M., & Ibraheem, O. F. (2015). Finite element analysis of longitudinal reinforcement beams with UHPFC under torsion. Computers and Concrete, 16(1), 1–16. doi:10.12989/cac.2015.16.1.001.

Mohammed, T. J., Abu Bakar, B. H., & Bunnori, N. M. (2015). Strengthening of reinforced concrete beams subjected to torsion with UHPFC composites. Structural Engineering and Mechanics, 56(1), 123–136. doi:10.12989/sem.2015.56.1.123.

Majed, M. M., Tavakkolizadeh, M., & Allawi, A. A. (2021). Finite element analysis of rectangular RC beams strengthened with FRP laminates under pure torsion. Structural Concrete, 22(4), 1946–1961. doi:10.1002/suco.202000291.

Mahmood, M. N. (2007). Nonlinear analysis of reinforced concrete beams under pure torsion. Journal of Applied Sciences, 7(22), 3524–3529. doi:10.3923/jas.2007.3524.3529.

Ibraheem, O. F., Abu Bakar, B. H., & Johari, I. (2014). Finite element analysis of reinforced concrete spandrel beams under combined loading. Computers and Concrete, 13(2), 291–308. doi:10.12989/cac.2014.13.2.291.

Kim, SangHun. (2004). Finite element analysis of carbon fiber-reinforced polymer (CFRP) strengthened reinforced concrete beams. Computers and Concrete, 1(4), 401–416. doi:10.12989/CAC.2004.1.4.401.

Thomas, J., & Ramaswamy, A. (2006). Finite element analysis of shear critical prestressed SFRC beams. Computers and Concrete, 3(1), 65–77. doi:10.12989/cac.2006.3.1.065.

Bulut, N., Anil, Ö., & Belgin, Ç. M. (2011). Nonlinear finite element analysis of RC beams strengthened with CFRP strip against shear. Computers and Concrete, 8(6), 717–723. doi:10.12989/cac.2011.8.6.717.

Hjaji, M. A., & Mohareb, M. (2014). Torsional flexural steady state response of monosymmetric thin-walled beams under harmonic loads. Structural Engineering and Mechanics, 52(4), 787–813. doi:10.12989/sem.2014.52.4.787.

Mohanavel, V., Prasath, S., Arunkumar, M., Pradeep, G. M., & Babu, S. S. (2020). Modeling and stress analysis of aluminium alloy based composite pressure vessel through ANSYS software. Materials Today: Proceedings, 37(Part 2), 1911–1916. doi:10.1016/j.matpr.2020.07.472.

Bhat, J. A. (2022). An innovative technique of anchoring lacing bars with CFS sections for shear strengthening of RC beams. Innovative Infrastructure Solutions, 7(1), 1-12. doi:10.1007/s41062-021-00722-7.

Muni, T., Devi, D., & Baishya, S. (2021). Parametric study of sheet pile wall using ABAQUS. Civil Engineering Journal (Iran), 7(1), 71–82. doi:10.28991/cej-2021-03091638.

Priya, M. P., & Santhi, A. S. (2022). A Material Model Approach on the Deflection and Crack Pattern in Different Panels of the RCC Flat Plate using Finite Element Analysis. Civil Engineering Journal (Iran), 8(3), 472–487. doi:10.28991/CEJ-2022-08-03-05.

Elkheshen, M., Eltahawy, R., Shedid, M., & Abdelrahman, A. (2022). Numerical verification for concrete beams reinforced with CFRP subjected to pure torsion. Engineering Structures, 268, 114739. doi:10.1016/j.engstruct.2022.114739.

Chen, Z., Chen, J., & Zhou, S. (2022). Experimental and numerical investigations on the behavior of a novel multilayer spirals reinforced square composite column under axial load. Structures, 43, 299–315. doi:10.1016/j.istruc.2022.06.050.


Full Text: PDF

DOI: 10.28991/CEJ-2023-09-01-04

Refbacks

  • There are currently no refbacks.




Copyright (c) 2023 Khalid Mohammed Breesem, Thaer Jasim Mohammed, ABEER FOUAD HUSSEIN

Creative Commons License
This work is licensed under a Creative Commons Attribution 4.0 International License.
x
Message