Experimental and Analytical Study of High-Strength Concrete Containing Natural Zeolite and Additives

Iswarya Gowram, Beulah. M

Abstract


The study compares the durability of Natural Zeolite with Metakaolin, Silica Fume, and Fly Ash on high-strength concrete. 300 concrete specimens were tested for compressive strength before and after an acid attack, modulus of elasticity, water absorption, and rapid chloride permeability. 5%, 10%, and 15% of the cement were replaced with cementitious elements while maintaining the same quantity of Natural Zeolite. In this investigation, the water-cement ratio was maintained at 0.35. After 28 days, the specimens were tested for durability. Samples of all mixes were TG/DT and FTIR tested. The optimal percentages of cementitious materials that resulted to the maximum durability enhancements were reported as the study results. Experimental results showed that Natural Zeolite and Metakaolin strengthened the durability of concrete. All the data show that 5% Natural Zeolite with 10% Metakaolin performs well. Good R2values and appropriate independent variable coefficients suggested that the regression findings for high-strength concrete durability were accurate. The P values of all models were less than 0.005 and the F values were statistically significant and appropriate; therefore, the generated models predict concrete's strength with authenticity.

 

Doi: 10.28991/CEJ-2022-08-10-019

Full Text: PDF


Keywords


Natural Zeolite (NZ); Metakaolin (MK); Silica Fume (SF); Fly Ash (FA); Durability; Regression Analysis.

References


Kodur, V., & Khaliq, W. (2011). Effect of Temperature on Thermal Properties of Different Types of High-Strength Concrete. Journal of Materials in Civil Engineering, 23(6), 793–801. doi:10.1061/(asce)mt.1943-5533.0000225.

Maheshbabu, V., Devi, B. A., & Maheshbabu, B. (2019). Experimental analysis on strength and durability of concrete with partial replacement of Natural Zeolite and Manufactured Sand. International Journal for Advance Research and Development, 4(9), 21-26.

Girskas, G., Skripkiunas, G., Šahmenko, G., & Korjakins, A. (2016). Durability of concrete containing synthetic zeolite from aluminum fluoride production waste as a supplementary cementitious material. Construction and Building Materials, 117, 99–106. doi:10.1016/j.conbuildmat.2016.04.155.

Mohseni, E., Tang, W., & Cui, H. (2017). Chloride diffusion and acid resistance of concrete containing zeolite and tuff as partial replacements of cement and sand. Materials, 10(4), 372. doi:10.3390/ma10040372.

Samimi, K., Kamali-Bernard, S., & Maghsoudi, A. A. (2018). Durability of self-compacting concrete containing pumice and zeolite against acid attack, carbonation and marine environment. Construction and Building Materials, 165, 247–263. doi:10.1016/j.conbuildmat.2017.12.235.

Jitchaiyaphum, K., Sinsiri, T., Jaturapitakkul, C., & Chindaprasirt, P. (2013). Cellular lightweight concrete containing high-calcium fly ash and natural zeolite. International Journal of Minerals, Metallurgy and Materials, 20(5), 462–471. doi:10.1007/s12613-013-0752-1.

Ramezanianpour, A. A., Mousavi, R., & Kalhori, M. (2014). Influence of zeolite additive on chloride durability and carbonation of concretes. Applied mathematics in Engineering, Management and Technology, 1081-1093.

Ma, C., Yi, G., Long, G., & Xie, Y. (2019). Properties of High-Early-Strength Aerated Concrete Incorporating Metakaolin. Journal of Materials in Civil Engineering, 31(10), 4019225. doi:10.1061/(asce)mt.1943-5533.0002823.

Dinakar, P., Sahoo, P. K., & Sriram, G. (2013). Effect of Metakaolin Content on the Properties of High Strength Concrete. International Journal of Concrete Structures and Materials, 7(3), 215–223. doi:10.1007/s40069-013-0045-0.

Alanazi, H., Yang, M., Zhang, D., & Gao, Z. (2017). Early strength and durability of metakaolin-based geopolymer concrete. Magazine of Concrete Research, 69(1), 46–54. doi:10.1680/jmacr.16.00118.

Al-alaily, H. S., A. Hassan, A. A., & Hussein, A. A. (2017). Probabilistic and Statistical Modeling of Chloride-Induced Corrosion for Concrete Containing Metakaolin. Journal of Materials in Civil Engineering, 29(11), 4017205. doi:10.1061/(asce)mt.1943-5533.0002062.

Mohsen Zadeh, P., Saghravani, S. F., & Asadollahfardi, G. (2019). Mechanical and durability properties of concrete containing zeolite mixed with meta-kaolin and micro-nano bubbles of water. Structural Concrete, 20(2), 786–797. doi:10.1002/suco.201800030.

Wang, X. Y. (2017). Analysis of hydration-mechanical-durability properties of metakaolin blended concrete. Applied Sciences (Switzerland), 7(10). doi:10.3390/app7101087.

Bumanis, G., Bajare, D., & Korjakins, A. (2016). Durability of High Strength Self Compacting Concrete with Metakaolin Containing Waste. Key Engineering Materials, 674, 65–70. doi:10.4028/www.scientific.net/kem.674.65.

Kim, H. S., Lee, S. H., & Moon, H. Y. (2007). Strength properties and durability aspects of high strength concrete using Korean metakaolin. Construction and Building Materials, 21(6), 1229–1237. doi:10.1016/j.conbuildmat.2006.05.007.

Faraj, R. H., Sherwani, A. F. H., & Daraei, A. (2019). Mechanical, fracture and durability properties of self-compacting high strength concrete containing recycled polypropylene plastic particles. Journal of Building Engineering, 25, 100808. doi:10.1016/j.jobe.2019.100808.

Kim, S. S., Qudoos, A., Jakhrani, S. H., Lee, J. B., & Kim, H. G. (2019). Influence of coarse aggregates and Silica Fume on the mechanical properties, durability, and microstructure of concrete. Materials, 12(20), 3324. doi:10.3390/ma12203324.

Domagała, L. (2020). Durability of structural lightweight concrete with sintered fly ash aggregate. Materials, 13(20), 4565. doi:10.3390/ma13204565.

Naseroleslami, R., & Nemati Chari, M. (2019). The effects of calcium stearate on mechanical and durability aspects of self-consolidating concretes incorporating silica fume/natural zeolite. Construction and Building Materials, 225, 384–400. doi:10.1016/j.conbuildmat.2019.07.144.

Fallah, S., & Nematzadeh, M. (2017). Mechanical properties and durability of high-strength concrete containing macro-polymeric and polypropylene fibers with nano-silica and silica fume. Construction and Building Materials, 132, 170–187. doi:10.1016/j.conbuildmat.2016.11.100.

Karakurt, C., & Topu, L. B. (2012). Effect of blended cements with natural zeolite and industrial by-products on rebar corrosion and high temperature resistance of concrete. Construction and Building Materials, 35, 906–911. doi:10.1016/j.conbuildmat.2012.04.045.

Wongkeo, W., Thongsanitgarn, P., Ngamjarurojana, A., & Chaipanich, A. (2014). Compressive strength and chloride resistance of self-compacting concrete containing high level fly ash and silica fume. Materials and Design, 64, 261–269. doi:10.1016/j.matdes.2014.07.042.

Al-Akhras, N. M. (2006). Durability of metakaolin concrete to sulfate attack. Cement and Concrete Research, 36(9), 1727–1734. doi:10.1016/j.cemconres.2006.03.026.

Hordijk, D. A., & Luković, M. (Eds.). (2017). High Tech Concrete: Where Technology and Engineering Meet. Proceedings of the 2017 Fib Symposium, 12-14 June, 2017, Maastricht, the Netherlands, Springer. doi:10.1007/978-3-319-59471-2.

Bakharev, T., Sanjayan, J. G., & Cheng, Y. B. (2003). Resistance of alkali-activated slag concrete to acid attack. Cement and Concrete Research, 33(10), 1607–1611. doi:10.1016/S0008-8846(03)00125-X.

Mandal, S., Shilpa, M., Rajeshwari, R. (2019). Compressive Strength Prediction of High-Strength Concrete Using Regression and ANN Models. Sustainable Construction and Building Materials. Lecture Notes in Civil Engineering, 25, Springer, Singapore. doi:10.1007/978-981-13-3317-0_41.

Kate, G. K., Nayak, C. B., & Thakare, S. B. (2021). Optimization of sustainable high-strength–high-volume fly ash concrete with and without steel fiber using Taguchi method and multi-regression analysis. Innovative Infrastructure Solutions, 6(2), 1–18. doi:10.1007/s41062-021-00472-6.

Balasubramaniam, T., & Stephen, S. J. (2022). Influence of industrial wastes on the mechanical and durability characteristics of high strength concrete. Construction and Building Materials, 317, 126202. doi:10.1016/j.conbuildmat.2021.126202.

Waghmare, S., Katdare, A., & Patil, N. (2021). Studies on computing compressive strength of zeolite blended concrete using multiple regression analysis. Materials Today: Proceedings, 49, 1239–1245. doi:10.1016/j.matpr.2021.06.296.

ASTM C150-07. (2012). Standard Specification for Portland Cement. ASTM International, Pennsylvania, United States. doi:10.1520/C0150-07.

IS 10262: 2019. (2019). Concrete Mix Proportioning Guidelines. Bureau of Indian Standards, New Delhi, India.

ASTM C1202-19. (2022). Standard Test Method for Electrical Indication of Concrete’s Ability to Resist Chloride Ion Penetration. ASTM International, Pennsylvania, United States. doi:10.1520/C1202-19.

Kuzielová, E., Slaný, M., Žemlička, M., Másilko, J., & Palou, M. T. (2021). Phase composition of silica fume—portland cement systems formed under hydrothermal curing evaluated by ftir, xrd, and tga. Materials, 14(11), 2786. doi:10.3390/ma14112786.

Dileep, P., Varghese, G. A., Sivakumar, S., & Narayanankutty, S. K. (2020). An innovative approach to utilize waste silica fume from zirconia industry to prepare high performance natural rubber composites for multi-functional applications. Polymer Testing, 81, 106172. doi:10.1016/j.polymertesting.2019.106172.

Mohd, M. A. B. A., Jamaludin, L., Hussin, K., Binhussain, M., Ghazali, C. M. R., & Izzat, A. M. (2013). Study on Fly Ash Based Geopolymer for Coating Applications. Advanced Materials Research, 686, 227–233. doi:10.4028/www.scientific.net/amr.686.227.

Gowram, I., M, B., Sudhir, M., Mohan, M. K., & Jain, D. (2021). Efficacy of Natural Zeolite and Metakaolin as Partial Alternatives to Cement in Fresh and Hardened High Strength Concrete. Advances in Materials Science and Engineering, 2021, 1–10. doi:10.1155/2021/4090389.

Sharma, B., & Srikanth, P. (2021). Research & development premium in the Indian equity market: An empirical study. Asian Economic and Financial Review, 11(10), 816–828. doi:10.18488/JOURNAL.AEFR.2021.1110.816.828.


Full Text: PDF

DOI: 10.28991/CEJ-2022-08-10-019

Refbacks

  • There are currently no refbacks.




Copyright (c) 2022 Iswarya Gowram, Beulah M

Creative Commons License
This work is licensed under a Creative Commons Attribution 4.0 International License.
x
Message