Experimental and Analytical Study of High-Strength Concrete Containing Natural Zeolite and Additives
Abstract
Doi: 10.28991/CEJ-2022-08-10-019
Full Text: PDF
Keywords
References
Kodur, V., & Khaliq, W. (2011). Effect of Temperature on Thermal Properties of Different Types of High-Strength Concrete. Journal of Materials in Civil Engineering, 23(6), 793–801. doi:10.1061/(asce)mt.1943-5533.0000225.
Maheshbabu, V., Devi, B. A., & Maheshbabu, B. (2019). Experimental analysis on strength and durability of concrete with partial replacement of Natural Zeolite and Manufactured Sand. International Journal for Advance Research and Development, 4(9), 21-26.
Girskas, G., Skripkiunas, G., Šahmenko, G., & Korjakins, A. (2016). Durability of concrete containing synthetic zeolite from aluminum fluoride production waste as a supplementary cementitious material. Construction and Building Materials, 117, 99–106. doi:10.1016/j.conbuildmat.2016.04.155.
Mohseni, E., Tang, W., & Cui, H. (2017). Chloride diffusion and acid resistance of concrete containing zeolite and tuff as partial replacements of cement and sand. Materials, 10(4), 372. doi:10.3390/ma10040372.
Samimi, K., Kamali-Bernard, S., & Maghsoudi, A. A. (2018). Durability of self-compacting concrete containing pumice and zeolite against acid attack, carbonation and marine environment. Construction and Building Materials, 165, 247–263. doi:10.1016/j.conbuildmat.2017.12.235.
Jitchaiyaphum, K., Sinsiri, T., Jaturapitakkul, C., & Chindaprasirt, P. (2013). Cellular lightweight concrete containing high-calcium fly ash and natural zeolite. International Journal of Minerals, Metallurgy and Materials, 20(5), 462–471. doi:10.1007/s12613-013-0752-1.
Ramezanianpour, A. A., Mousavi, R., & Kalhori, M. (2014). Influence of zeolite additive on chloride durability and carbonation of concretes. Applied mathematics in Engineering, Management and Technology, 1081-1093.
Ma, C., Yi, G., Long, G., & Xie, Y. (2019). Properties of High-Early-Strength Aerated Concrete Incorporating Metakaolin. Journal of Materials in Civil Engineering, 31(10), 4019225. doi:10.1061/(asce)mt.1943-5533.0002823.
Dinakar, P., Sahoo, P. K., & Sriram, G. (2013). Effect of Metakaolin Content on the Properties of High Strength Concrete. International Journal of Concrete Structures and Materials, 7(3), 215–223. doi:10.1007/s40069-013-0045-0.
Alanazi, H., Yang, M., Zhang, D., & Gao, Z. (2017). Early strength and durability of metakaolin-based geopolymer concrete. Magazine of Concrete Research, 69(1), 46–54. doi:10.1680/jmacr.16.00118.
Al-alaily, H. S., A. Hassan, A. A., & Hussein, A. A. (2017). Probabilistic and Statistical Modeling of Chloride-Induced Corrosion for Concrete Containing Metakaolin. Journal of Materials in Civil Engineering, 29(11), 4017205. doi:10.1061/(asce)mt.1943-5533.0002062.
Mohsen Zadeh, P., Saghravani, S. F., & Asadollahfardi, G. (2019). Mechanical and durability properties of concrete containing zeolite mixed with meta-kaolin and micro-nano bubbles of water. Structural Concrete, 20(2), 786–797. doi:10.1002/suco.201800030.
Wang, X. Y. (2017). Analysis of hydration-mechanical-durability properties of metakaolin blended concrete. Applied Sciences (Switzerland), 7(10). doi:10.3390/app7101087.
Bumanis, G., Bajare, D., & Korjakins, A. (2016). Durability of High Strength Self Compacting Concrete with Metakaolin Containing Waste. Key Engineering Materials, 674, 65–70. doi:10.4028/www.scientific.net/kem.674.65.
Kim, H. S., Lee, S. H., & Moon, H. Y. (2007). Strength properties and durability aspects of high strength concrete using Korean metakaolin. Construction and Building Materials, 21(6), 1229–1237. doi:10.1016/j.conbuildmat.2006.05.007.
Faraj, R. H., Sherwani, A. F. H., & Daraei, A. (2019). Mechanical, fracture and durability properties of self-compacting high strength concrete containing recycled polypropylene plastic particles. Journal of Building Engineering, 25, 100808. doi:10.1016/j.jobe.2019.100808.
Kim, S. S., Qudoos, A., Jakhrani, S. H., Lee, J. B., & Kim, H. G. (2019). Influence of coarse aggregates and Silica Fume on the mechanical properties, durability, and microstructure of concrete. Materials, 12(20), 3324. doi:10.3390/ma12203324.
Domagała, L. (2020). Durability of structural lightweight concrete with sintered fly ash aggregate. Materials, 13(20), 4565. doi:10.3390/ma13204565.
Naseroleslami, R., & Nemati Chari, M. (2019). The effects of calcium stearate on mechanical and durability aspects of self-consolidating concretes incorporating silica fume/natural zeolite. Construction and Building Materials, 225, 384–400. doi:10.1016/j.conbuildmat.2019.07.144.
Fallah, S., & Nematzadeh, M. (2017). Mechanical properties and durability of high-strength concrete containing macro-polymeric and polypropylene fibers with nano-silica and silica fume. Construction and Building Materials, 132, 170–187. doi:10.1016/j.conbuildmat.2016.11.100.
Karakurt, C., & Topu, L. B. (2012). Effect of blended cements with natural zeolite and industrial by-products on rebar corrosion and high temperature resistance of concrete. Construction and Building Materials, 35, 906–911. doi:10.1016/j.conbuildmat.2012.04.045.
Wongkeo, W., Thongsanitgarn, P., Ngamjarurojana, A., & Chaipanich, A. (2014). Compressive strength and chloride resistance of self-compacting concrete containing high level fly ash and silica fume. Materials and Design, 64, 261–269. doi:10.1016/j.matdes.2014.07.042.
Al-Akhras, N. M. (2006). Durability of metakaolin concrete to sulfate attack. Cement and Concrete Research, 36(9), 1727–1734. doi:10.1016/j.cemconres.2006.03.026.
Hordijk, D. A., & Luković, M. (Eds.). (2017). High Tech Concrete: Where Technology and Engineering Meet. Proceedings of the 2017 Fib Symposium, 12-14 June, 2017, Maastricht, the Netherlands, Springer. doi:10.1007/978-3-319-59471-2.
Bakharev, T., Sanjayan, J. G., & Cheng, Y. B. (2003). Resistance of alkali-activated slag concrete to acid attack. Cement and Concrete Research, 33(10), 1607–1611. doi:10.1016/S0008-8846(03)00125-X.
Mandal, S., Shilpa, M., Rajeshwari, R. (2019). Compressive Strength Prediction of High-Strength Concrete Using Regression and ANN Models. Sustainable Construction and Building Materials. Lecture Notes in Civil Engineering, 25, Springer, Singapore. doi:10.1007/978-981-13-3317-0_41.
Kate, G. K., Nayak, C. B., & Thakare, S. B. (2021). Optimization of sustainable high-strength–high-volume fly ash concrete with and without steel fiber using Taguchi method and multi-regression analysis. Innovative Infrastructure Solutions, 6(2), 1–18. doi:10.1007/s41062-021-00472-6.
Balasubramaniam, T., & Stephen, S. J. (2022). Influence of industrial wastes on the mechanical and durability characteristics of high strength concrete. Construction and Building Materials, 317, 126202. doi:10.1016/j.conbuildmat.2021.126202.
Waghmare, S., Katdare, A., & Patil, N. (2021). Studies on computing compressive strength of zeolite blended concrete using multiple regression analysis. Materials Today: Proceedings, 49, 1239–1245. doi:10.1016/j.matpr.2021.06.296.
ASTM C150-07. (2012). Standard Specification for Portland Cement. ASTM International, Pennsylvania, United States. doi:10.1520/C0150-07.
IS 10262: 2019. (2019). Concrete Mix Proportioning Guidelines. Bureau of Indian Standards, New Delhi, India.
ASTM C1202-19. (2022). Standard Test Method for Electrical Indication of Concrete’s Ability to Resist Chloride Ion Penetration. ASTM International, Pennsylvania, United States. doi:10.1520/C1202-19.
Kuzielová, E., Slaný, M., Žemlička, M., Másilko, J., & Palou, M. T. (2021). Phase composition of silica fume—portland cement systems formed under hydrothermal curing evaluated by ftir, xrd, and tga. Materials, 14(11), 2786. doi:10.3390/ma14112786.
Dileep, P., Varghese, G. A., Sivakumar, S., & Narayanankutty, S. K. (2020). An innovative approach to utilize waste silica fume from zirconia industry to prepare high performance natural rubber composites for multi-functional applications. Polymer Testing, 81, 106172. doi:10.1016/j.polymertesting.2019.106172.
Mohd, M. A. B. A., Jamaludin, L., Hussin, K., Binhussain, M., Ghazali, C. M. R., & Izzat, A. M. (2013). Study on Fly Ash Based Geopolymer for Coating Applications. Advanced Materials Research, 686, 227–233. doi:10.4028/www.scientific.net/amr.686.227.
Gowram, I., M, B., Sudhir, M., Mohan, M. K., & Jain, D. (2021). Efficacy of Natural Zeolite and Metakaolin as Partial Alternatives to Cement in Fresh and Hardened High Strength Concrete. Advances in Materials Science and Engineering, 2021, 1–10. doi:10.1155/2021/4090389.
Sharma, B., & Srikanth, P. (2021). Research & development premium in the Indian equity market: An empirical study. Asian Economic and Financial Review, 11(10), 816–828. doi:10.18488/JOURNAL.AEFR.2021.1110.816.828.
DOI: 10.28991/CEJ-2022-08-10-019
Refbacks
- There are currently no refbacks.
Copyright (c) 2022 Iswarya Gowram, Beulah M
This work is licensed under a Creative Commons Attribution 4.0 International License.