Statistical Analysis Approaches in Scour Depth of Bridge Piers
Downloads
Doi: 10.28991/CEJ-2023-09-01-011
Full Text: PDF
Downloads
[2] Melville, B. W., & Coleman, S. E. (2000). Bridge scour. Water Resources Publication, Colorado, United States.
[3] Arneson, L. A., Zevenbergen, L. W., Lagasse, P. F., & Clopper, P. E. (2012). Evaluating scour at bridges. No. FHWA-HIF-12-003, National Highway Institute, Washington, United States.
[4] Hamil, L. (1999). Bridge Hydraulics. Taylor & Francis, Milton Park, United States.
[5] Chiew, Y. M. (1984). Local Scour at Bridge Piers. Ph.D. Thesis, Department of Civil Engineering, The University of Auckland, Auckland, New Zealand.
[6] Barbhuiya, A. K., & Dey, S. (2003). Vortex flow field in a scour hole around abutments. International Journal of Sediment Research, 18(4), 310-325.
[7] Laursen, E. M., & Toch, A. (1956). Scour around bridge piers and abutments (Vol. 4). Ames, Iowa Highway Research Board, Iowa, United States.
[8] Neil, D. T., Orpin, A. R., Ridd, P. V., & Yu, B. (2002). Sediment yield and impacts from river catchments to the Great Barrier Reef lagoon: a review. Marine and Freshwater Research, 53(4), 733-752. doi:10.1071/MF00151.
[9] Dietz, J. W. (1972). Construction of long piers at oblique currents illustrated by the BAB-Main Bridge Eddersheim, and Systematic model tests on scour formation at piers. Mitteilungsblatt der Bundersanstalt for Wasserbau, 31.
[10] Melville, B. W. (1975). Local scour at bridge sites. Report. No. 117, School of Engineering, University of Auckland, Auckland, New Zealand.
[11] Komura, S., Neill, C. R., & Breusers, H. N. C. (1963). Discussion of "Sediment Transportation Mechanics: Erosion of Sediment: Progress Report by the Task Committee on Preparation of Sedimentation Manual of the Committee on Sedimentation of the Hydraulics Division”. Journal of the Hydraulics Division, 89(1), 269-281.
[12] Omara, H., Ookawara, S., Nassar, K. A., Masria, A., & Tawfik, A. (2022). Assessing local scour at rectangular bridge piers. Ocean Engineering, 266, 112912. doi:10.1016/j.oceaneng.2022.112912.
[13] Luo, K., Si, Y., Lu, S., Liang, B., & Qi, H. (2022). Characteristics of reducing local scour around cylindrical pier using a horn-shaped collar. Journal of Engineering and Applied Science, 69(1), 1-21. doi:10.1186/s44147-022-00160-x.
[14] Reddy, S. K., Kalathil, S. T., Chand, M. G., & Chandra, V. (2022). Influence of Pier Shape and Interference Effect on Local Scour. River Hydraulics, 297-307. doi:10.1007/978-3-030-81768-8_25.
[15] Farooq, R., & Ghumman, A. R. (2019). Impact assessment of pier shape and modifications on scouring around bridge pier. Water, 11(9), 1761. doi:10.3390/w11091761.
[16] Jan, R., & Lone, M. A. (2022). Effect of mutual interference of piers on their local scour phenomenon. Innovative Infrastructure Solutions, 7(2), 1-15. doi:10.1007/s41062-022-00790-3.
[17] Al-Shukur, A. H. K., & Obeid, Z. H. (2016). Experimental study of bridge pier shape to minimize local scour. International Journal of Civil Engineering and Technology, 7(1), 162-171.
[18] Moussa, A. M. A. (2018). Evaluation of local scour around bridge piers for various geometrical shapes using mathematical models. Ain Shams Engineering Journal, 9(4), 2571–2580. doi:10.1016/j.asej.2017.08.003.
[19] Vijayasree, B. A., Eldho, T. I., Mazumder, B. S., & Ahmad, N. (2019). Influence of bridge pier shape on flow field and scour geometry. International Journal of River Basin Management, 17(1), 109–129. doi:10.1080/15715124.2017.1394315.
[20] Canadian Standards Association (CSA). (2019). Canadian Highway Bridge Design Code; CSA S6-19 833. Canadian Standards Association (CSA), Toronto, Canada.
[21] Jalal, H. K., & Hassan, W. H. (2020). Effect of Bridge Pier Shape on Depth of Scour. IOP Conference Series: Materials Science and Engineering, 671(1), 12001. doi:10.1088/1757-899X/671/1/012001.
[22] Aly, A.M., & Dougherty, E. (2021). Bridge pier geometry effects on local scour potential: A comparative study. Ocean Engineering, 234, 109326. doi:10.1016/j.oceaneng.2021.109326.
[23] Ghodsi, H., Najafzadeh, M., Khanjani, M. J., & Beheshti, A. (2021). Effects of Different Geometric Parameters of Complex Bridge Piers on Maximum Scour Depth: Experimental Study. Journal of Waterway, Port, Coastal, and Ocean Engineering, 147(5), 4021021. doi:10.1061/(asce)ww.1943-5460.0000645.
[24] Melville, B.W., & Sutherland, A.J. (1988). Design Method for Local Scour at Bridge Piers. Journal of Hydraulic Engineering, 114(10), 1210–1226. doi:10.1061/(asce)0733-9429(1988)114:10(1210).
[25] Raudkivi, A.J., & Ettema, R. (1983). Clear-water scour at cylindrical piers. Journal of hydraulic engineering, 109(3), 338-350. doi:10.1061/(ASCE)0733-9429(1983)109:3(338).
[26] Riahi-Madvar, H., Dehghani, M., Seifi, A., Salwana, E., Shamshirband, S., Mosavi, A., & Chau, K.W. (2019). Comparative analysis of soft computing techniques RBF, MLP, and ANFIS with MLR and MNLR for predicting grade-control scour hole geometry. Engineering Applications of Computational Fluid Mechanics, 13(1), 529-550.
[27] IBM SPSS Statistics. (2018). IBM SPSS Statistical v22 Commend Syntax Reference. Available online: https://www.ibm.com/ support/pages/ibm-spss-statistics-22-documentation (accessed on May 2022).
[28] Shakya, R., Singh, M., Sarda, V. K., & Kumar, N. (2022). Scour depth forecast modeling caused by submerged vertical impinging circular jet: a comparative study between ANN and MNLR. Sustainable Water Resources Management, 8(2), 1-10. doi:10.1007/s40899-022-00634-z.
[29] Ferreira, C. (2001). Gene expression programming: a new adaptive algorithm for solving problems. arXiv preprint. doi:10.48550/arXiv.cs/0102027.
[30] Li, Q., Cai, Z., Zhu, L., & Zhao, Y. (2004). Application of gene expression programming in predicting the amount of gas emitted from coal face. Yingyong Jichu Yu Gongcheng Kexue Xuebao/Journal of Basic Science and Engineering, 12(1), 49–54.
[31] Al Shaikhli, H. I., & S. I. Khassaf (2022). Using of flow 3d as CFD materials approach in waves generation. Materials Today: Proceedings, 49, 2907–2911. doi:10.1016/j.matpr.2021.10.282
[32] Al Shaikhli, H. I., & Khassaf, S. I. (2022). Stepped Mound Breakwater Simulation by Using Flow 3D. Eurasian Journal of Engineering and Technology, 6, 60-68.
[33] Hirt, C. W., Nichols, B. D., & Romero, N. C. (1975). SOLA: A numerical solution algorithm for transient fluid flows (No. LA-5852). Los Alamos Scientific Lab., New Mexico, United States.
[34] Hirt, C. W., & Nichols, B. D. (1981). Volume of fluid (VOF) method for the dynamics of free boundaries. Journal of Computational Physics, 39(1), 201–225. doi:10.1016/0021-9991(81)90145-5.
- Authors retain all copyrights. It is noticeable that authors will not be forced to sign any copyright transfer agreements.
- This work (including HTML and PDF Files) is licensed under a Creative Commons Attribution 4.0 International License.