Statistical Analysis Approaches in Scour Depth of Bridge Piers

Shahad Abdulkathum, Hassan I. Al-Shaikhli, Ahmed A. Al-Abody, Tameem M. Hashim


A local scour is the removal of bed material from around the pier of the bridge. This bed removal is considered a big problem and is of great concern for hydraulic engineers. They should find economic solutions for this problem. The exaggerated local scour around bridge piers leads to many problems for the whole bridge structure, such as stability problems that may lead to the bridge's destruction. This paper aims to verify the scour depth around different shapes of uniform bridge piers for different flow conditions than those done by previous researchers using different prediction models. Where the consistency of previous experimental investigations is verified by multiple nonlinear regression analysis (MNLR), Gene Expression Programming (GEP) and Artificial Neural Network (ANN) models. In the comparison of values that were measured and predicted by the four models (CFD, MNLR, ANN, and Gene), it is seen that the ANN model has the ability to predict the Ys/b values higher than other models used in relation to the measured values. This makes the ANN model superior in predicting the Ys/b value over the other used models, followed by the Gene model. In comparison, the values of the R2and RMSE for the four models that were used in this study, for the Ys/b model using the ANN had a value of 0.9978 and 0.0147, respectively, while those for the Ys/b model using the Gene model were 0.9800 and 0.0375, respectively.


Doi: 10.28991/CEJ-2023-09-01-011

Full Text: PDF


Scour Depth Estimation; Local Scour; Empirical Formula; ANN; MNLR; GEP; CFD.


Richardson, E. V., & Davis, S. R. (2001). Evaluating scour at bridges. No. FHWA-NHI-01-001. Office of Bridge Technology, Federal Highway Administration, Washington, United States.

Melville, B. W., & Coleman, S. E. (2000). Bridge scour. Water Resources Publication, Colorado, United States.

Arneson, L. A., Zevenbergen, L. W., Lagasse, P. F., & Clopper, P. E. (2012). Evaluating scour at bridges. No. FHWA-HIF-12-003, National Highway Institute, Washington, United States.

Hamil, L. (1999). Bridge Hydraulics. Taylor & Francis, Milton Park, United States.

Chiew, Y. M. (1984). Local Scour at Bridge Piers. Ph.D. Thesis, Department of Civil Engineering, The University of Auckland, Auckland, New Zealand.

Barbhuiya, A. K., & Dey, S. (2003). Vortex flow field in a scour hole around abutments. International Journal of Sediment Research, 18(4), 310-325.

Laursen, E. M., & Toch, A. (1956). Scour around bridge piers and abutments (Vol. 4). Ames, Iowa Highway Research Board, Iowa, United States.

Neil, D. T., Orpin, A. R., Ridd, P. V., & Yu, B. (2002). Sediment yield and impacts from river catchments to the Great Barrier Reef lagoon: a review. Marine and Freshwater Research, 53(4), 733-752. doi:10.1071/MF00151.

Dietz, J. W. (1972). Construction of long piers at oblique currents illustrated by the BAB-Main Bridge Eddersheim, and Systematic model tests on scour formation at piers. Mitteilungsblatt der Bundersanstalt for Wasserbau, 31.

Melville, B. W. (1975). Local scour at bridge sites. Report. No. 117, School of Engineering, University of Auckland, Auckland, New Zealand.

Komura, S., Neill, C. R., & Breusers, H. N. C. (1963). Discussion of “Sediment Transportation Mechanics: Erosion of Sediment: Progress Report by the Task Committee on Preparation of Sedimentation Manual of the Committee on Sedimentation of the Hydraulics Division”. Journal of the Hydraulics Division, 89(1), 269-281.

Omara, H., Ookawara, S., Nassar, K. A., Masria, A., & Tawfik, A. (2022). Assessing local scour at rectangular bridge piers. Ocean Engineering, 266, 112912. doi:10.1016/j.oceaneng.2022.112912.

Luo, K., Si, Y., Lu, S., Liang, B., & Qi, H. (2022). Characteristics of reducing local scour around cylindrical pier using a horn-shaped collar. Journal of Engineering and Applied Science, 69(1), 1-21. doi:10.1186/s44147-022-00160-x.

Reddy, S. K., Kalathil, S. T., Chand, M. G., & Chandra, V. (2022). Influence of Pier Shape and Interference Effect on Local Scour. River Hydraulics, 297-307. doi:10.1007/978-3-030-81768-8_25.

Farooq, R., & Ghumman, A. R. (2019). Impact assessment of pier shape and modifications on scouring around bridge pier. Water, 11(9), 1761. doi:10.3390/w11091761.

Jan, R., & Lone, M. A. (2022). Effect of mutual interference of piers on their local scour phenomenon. Innovative Infrastructure Solutions, 7(2), 1-15. doi:10.1007/s41062-022-00790-3.

Al-Shukur, A. H. K., & Obeid, Z. H. (2016). Experimental study of bridge pier shape to minimize local scour. International Journal of Civil Engineering and Technology, 7(1), 162-171.

Moussa, A. M. A. (2018). Evaluation of local scour around bridge piers for various geometrical shapes using mathematical models. Ain Shams Engineering Journal, 9(4), 2571–2580. doi:10.1016/j.asej.2017.08.003.

Vijayasree, B. A., Eldho, T. I., Mazumder, B. S., & Ahmad, N. (2019). Influence of bridge pier shape on flow field and scour geometry. International Journal of River Basin Management, 17(1), 109–129. doi:10.1080/15715124.2017.1394315.

Canadian Standards Association (CSA). (2019). Canadian Highway Bridge Design Code; CSA S6-19 833. Canadian Standards Association (CSA), Toronto, Canada.

Jalal, H. K., & Hassan, W. H. (2020). Effect of Bridge Pier Shape on Depth of Scour. IOP Conference Series: Materials Science and Engineering, 671(1), 12001. doi:10.1088/1757-899X/671/1/012001.

Aly, A.M., & Dougherty, E. (2021). Bridge pier geometry effects on local scour potential: A comparative study. Ocean Engineering, 234, 109326. doi:10.1016/j.oceaneng.2021.109326.

Ghodsi, H., Najafzadeh, M., Khanjani, M. J., & Beheshti, A. (2021). Effects of Different Geometric Parameters of Complex Bridge Piers on Maximum Scour Depth: Experimental Study. Journal of Waterway, Port, Coastal, and Ocean Engineering, 147(5), 4021021. doi:10.1061/(asce)ww.1943-5460.0000645.

Melville, B.W., & Sutherland, A.J. (1988). Design Method for Local Scour at Bridge Piers. Journal of Hydraulic Engineering, 114(10), 1210–1226. doi:10.1061/(asce)0733-9429(1988)114:10(1210).

Raudkivi, A.J., & Ettema, R. (1983). Clear-water scour at cylindrical piers. Journal of hydraulic engineering, 109(3), 338-350. doi:10.1061/(ASCE)0733-9429(1983)109:3(338).

Riahi-Madvar, H., Dehghani, M., Seifi, A., Salwana, E., Shamshirband, S., Mosavi, A., & Chau, K.W. (2019). Comparative analysis of soft computing techniques RBF, MLP, and ANFIS with MLR and MNLR for predicting grade-control scour hole geometry. Engineering Applications of Computational Fluid Mechanics, 13(1), 529-550.

IBM SPSS Statistics. (2018). IBM SPSS Statistical v22 Commend Syntax Reference. Available online: support/pages/ibm-spss-statistics-22-documentation (accessed on May 2022).

Shakya, R., Singh, M., Sarda, V. K., & Kumar, N. (2022). Scour depth forecast modeling caused by submerged vertical impinging circular jet: a comparative study between ANN and MNLR. Sustainable Water Resources Management, 8(2), 1-10. doi:10.1007/s40899-022-00634-z.

Ferreira, C. (2001). Gene expression programming: a new adaptive algorithm for solving problems. arXiv preprint. doi:10.48550/arXiv.cs/0102027.

Li, Q., Cai, Z., Zhu, L., & Zhao, Y. (2004). Application of gene expression programming in predicting the amount of gas emitted from coal face. Yingyong Jichu Yu Gongcheng Kexue Xuebao/Journal of Basic Science and Engineering, 12(1), 49–54.

Al Shaikhli, H. I., & S. I. Khassaf (2022). Using of flow 3d as CFD materials approach in waves generation. Materials Today: Proceedings, 49, 2907–2911. doi:10.1016/j.matpr.2021.10.282

Al Shaikhli, H. I., & Khassaf, S. I. (2022). Stepped Mound Breakwater Simulation by Using Flow 3D. Eurasian Journal of Engineering and Technology, 6, 60-68.

Hirt, C. W., Nichols, B. D., & Romero, N. C. (1975). SOLA: A numerical solution algorithm for transient fluid flows (No. LA-5852). Los Alamos Scientific Lab., New Mexico, United States.

Hirt, C. W., & Nichols, B. D. (1981). Volume of fluid (VOF) method for the dynamics of free boundaries. Journal of Computational Physics, 39(1), 201–225. doi:10.1016/0021-9991(81)90145-5.

Full Text: PDF

DOI: 10.28991/CEJ-2023-09-01-011


  • There are currently no refbacks.

Copyright (c) 2023 hassan Ibrahim Al Shaikhli

Creative Commons License
This work is licensed under a Creative Commons Attribution 4.0 International License.