Analysis of Heat Potential in Solar Panels for Thermoelectric Generators using ANSYS Software

Catur Harsito, Teguh Triyono, Eki Rovianto

Abstract


The growing demand for energy has an impact on the development of environmentally friendly renewable energy. The sun is energy that has the potential to be used as electrical energy through light energy and heat energy. Recently, research interest related to photovoltaic performance has increased. Several studies have investigated the effect of panel cooling on photovoltaic performance. In this study, the use of exergy solar panels is considered to improve performance by adding a thermoelectric system. Research work related to photovoltaic testing with thermoelectrics at low temperatures has not been carried out. Therefore, experimental methods to obtain temperature profiles and simulation methods to see the power potential generated from thermoelectrics have been carried out. The experimental method is carried out using mono-crystalline panels with type K sensors to retrieve temperature data and data acquisition as deviations from the current, voltage, and temperature results of the panel. The simulation model was carried out using the ANSYS software. Tests are carried out, taking into account the effect of back panel temperature on system performance. The results showed that the photovoltaic temperature fluctuated due to the influence of cloud cover, the highest photovoltaic temperature was 57°C, and the lowest temperature was 30°C. The maximum power produced by photovoltaic is 39.8W. It is then applied to the thermoelectric simulation based on the highest temperature, and the maximum power value is 1673.4 mW. This photovoltaic-thermoelectric generator system produces a 4.2% increase in power value over conventional photovoltaic systems. The findings in this study can be used as a reference for all types of low-temperature photovoltaic-thermoelectric systems.

 

Doi: 10.28991/CEJ-2022-08-07-02

Full Text: PDF


Keywords


Photovoltaic-Thermoelectric Generator; FEM; Renewable Energy; Heat Potential.

References


Harsito, C., Tjahjana, D.D.D.P., & Kristiawan, B. (2020). Savonius turbine performance with slotted blades. The 5th International Conference on Industrial, Mechanical, Electrical, And Chemical Engineering 2019 (ICIMECE 2019). doi:10.1063/5.0000797.

Tjahjana, D. D. D. P., Hadi, S., Wicaksono, Y. A., Kurniawati, D. M., Fahrudin, F., Utomo, I. S., ... & Prasetyo, A. (2019). Study on performance improvement of the Savonius wind turbine for Urban Power System with Omni-Directional Guide Vane (ODGV). Journal of Advanced Research in Fluid Mechanics and Thermal Sciences, 55(1), 126-135.

Tjahjana, D. D. D. P., Arifin, Z., Suyitno, S., Juwana, W. E., Prabowo, A. R., & Harsito, C. (2021). Experimental study of the effect of slotted blades on the Savonius wind turbine performance. Theoretical and Applied Mechanics Letters, 11(3), 100249. doi:10.1016/j.taml.2021.100249.

Ruzaimi, A., Shafie, S., Hassan, W. Z. W., Azis, N., Ya’Acob, M. E., & Supeni, E. E. (2019). Photovoltaic Panel Temperature and Heat Distribution Analysis for Thermoelectric Generator Application. 2018 IEEE 5th International Conference on Smart Instrumentation, Measurement and Application (ICSIMA). doi:10.1109/ICSIMA.2018.8688801.

Snyder, G. J., & Toberer, E. S. (2008). Complex thermoelectric materials. Nature Materials, 7(2), 105–114. doi:10.1038/nmat2090.

Beretta, D., Neophytou, N., Hodges, J. M., Kanatzidis, M. G., Narducci, D., Martin-Gonzalez, M., ... & Caironi, M. (2019). Thermoelectrics: From history, a window to the future. Materials Science and Engineering: R: Reports, 138, 100501. doi:10.1016/j.mser.2018.09.001.

Jaziri, N., Boughamoura, A., Müller, J., Mezghani, B., Tounsi, F., & Ismail, M. (2020). A comprehensive review of Thermoelectric Generators: Technologies and common applications. Energy Reports, 6, 264–287. doi:10.1016/j.egyr.2019.12.011.

Talawo, R. C., Fotso, B. E. M., & Fogue, M. (2021). An experimental study of a solar thermoelectric generator with vortex tube for hybrid vehicle. International Journal of Thermofluids, 10(100079). doi:10.1016/j.ijft.2021.100079.

Xiao, J., Yang, T., Li, P., Zhai, P., & Zhang, Q. (2012). Thermal design and management for performance optimization of solar thermoelectric generator. Applied Energy, 93, 33–38. doi:10.1016/j.apenergy.2011.06.006.

Suzuki, R. O., Ito, K. O., & Oki, S. (2016). Analysis of the Performance of Thermoelectric Modules Under Concentrated Radiation Heat Flux. Journal of Electronic Materials, 45(3), 1827–1835. doi:10.1007/s11664-015-4237-z.

Li, G., Pei, G., Ji, J., Yang, M., Su, Y., & Xu, N. (2015). Numerical and experimental study on a PV/T system with static miniature solar concentrator. Solar Energy, 120, 565–574. doi:10.1016/j.solener.2015.07.046.

Da, Y., Xuan, Y., & Li, Q. (2016). From light trapping to solar energy utilization: A novel photovoltaic-thermoelectric hybrid system to fully utilize solar spectrum. Energy, 95, 200–210. doi:10.1016/j.energy.2015.12.024.

Makki, A., Omer, S., Su, Y., & Sabir, H. (2016). Numerical investigation of heat pipe-based photovoltaic-thermoelectric generator (HP-PV/TEG) hybrid system. Energy Conversion and Management, 112, 274–287. doi:10.1016/j.enconman.2015.12.069.

Cui, T., Xuan, Y., & Li, Q. (2016). Design of a novel concentrating photovoltaic-thermoelectric system incorporated with phase change materials. Energy Conversion and Management, 112, 49–60. doi:10.1016/j.enconman.2016.01.008.

Lamba, R., & Kaushik, S. C. (2016). Modeling and performance analysis of a concentrated photovoltaic-thermoelectric hybrid power generation system. Energy Conversion and Management, 115, 288–298. doi:10.1016/j.enconman.2016.02.061.

Zhu, W., Deng, Y., Wang, Y., Shen, S., & Gulfam, R. (2016). High-performance photovoltaic-thermoelectric hybrid power generation system with optimized thermal management. Energy, 100, 91–101. doi:10.1016/j.energy.2016.01.055.

Ju, X., Wang, Z., Flamant, G., Li, P., & Zhao, W. (2012). Numerical analysis and optimization of a spectrum splitting concentration photovoltaic-thermoelectric hybrid system. Solar Energy, 86(6), 1941–1954. doi:10.1016/j.solener.2012.02.024.

Elsarrag, E., Pernau, H., Heuer, J., Roshan, N., Alhorr, Y., & Bartholomé, K. (2015). Spectrum splitting for efficient utilization of solar radiation: a novel photovoltaic–thermoelectric power generation system. Renewables: Wind, Water, and Solar, 2(1). doi:10.1186/s40807-015-0016-y.

Zhang, J., & Xuan, Y. (2017). Performance improvement of a photovoltaic - Thermoelectric hybrid system subjecting to fluctuant solar radiation. Renewable Energy, 113, 1551–1558. doi:10.1016/j.renene.2017.07.003.

Zhang, X., Chau, K., & Chan, C. (2009). Design and Implementation of a Thermoelectric- Photovoltaic Hybrid Energy Source for Hybrid Electric Vehicles. World Electric Vehicle Journal, 3(2), 271–281. doi:10.3390/wevj3020271.

Jun, Y. J., Park, K. S., & Song, Y. H. (2021). A study on the structure of Solar/Photovoltaic Hybrid system for the purpose of preventing overheat and improving the system performance. Solar Energy, 230, 470–484. doi:10.1016/j.solener.2021.10.019.

Okpalike, C., Okeke, F. O., Ezema, E. C., Oforji, P. I., & Igwe, A. E. (2022). Effects of Renovation on Ventilation and Energy Saving in Residential Building. Civil Engineering Journal, 7, 124–134. doi:10.28991/cej-sp2021-07-09.

Maduabuchi, C., Lamba, R., Njoku, H., Eke, M., & Mgbemene, C. (2021). Effects of leg geometry and multistaging of thermoelectric modules on the performance of a photovoltaic-thermoelectric system using different photovoltaic cells. International Journal of Energy Research, 45(12), 17888–17902. doi:10.1002/er.6925.

Erturun, U., & Mossi, K. (2012). A Feasibility Investigation on Improving Structural Integrity of Thermoelectric Modules With Varying Geometry. Volume 2: Mechanics and Behavior of Active Materials; Integrated System Design and Implementation; Bio-Inspired Materials and Systems; Energy Harvesting. doi:10.1115/smasis2012-8247.

Ruzaimi, A., Shafie, S., Hassan, W. Z. W., Azis, N., Effendy Ya’acob, M., & Elianddy, E. (2020). Temperature distribution analysis of monocrystalline photovoltaic panel for photovoltaic-thermoelectric generator (PV-TEG) hybrid application. Indonesian Journal of Electrical Engineering and Computer Science, 17(2), 858–867. doi:10.11591/ijeecs.v17.i2.pp858-867.

Doraghi, Q., Khordehgah, N., Żabnieńska-Góra, A., Ahmad, L., Norman, L., Ahmad, D., & Jouhara, H. (2021). Investigation and computational modelling of variable teg leg geometries. ChemEngineering, 5(3), 1–16. doi:10.3390/chemengineering5030045.

Ibeagwu, O. I. (2019). Modelling and comprehensive analysis of TEGs with diverse variable leg geometry. Energy, 180, 90–106. doi:10.1016/j.energy.2019.05.088.


Full Text: PDF

DOI: 10.28991/CEJ-2022-08-07-02

Refbacks

  • There are currently no refbacks.




Copyright (c) 2022 Catur Harsito, Teguh Triyono, Eki Roviyanto

Creative Commons License
This work is licensed under a Creative Commons Attribution 4.0 International License.
x
Message