Effect of Fibers Orientation on the Nonlinear Dynamic Performance of Laminated Composite Plate under Different Loading In-plane

Wisam Hamzah Mohammed, Svetlana Shambina, Haider Kadhim Ammash


Non-linear dynamic analysis of a cross-ply laminated composite with fibre spacing plates under in-plane loading was presented. The mathematical formulation is based on first-order shear deformation theory and von-Karman non-linearity. Eight-node isoperimetric quadrilateral elements with five degrees of freedom per node were used to maintain geometric nonlinearity. In this investigation, a variety of fiber spacings and fibre orientations were used for the purpose of studying the effect of improvements on the behaviour of samples with this type of load. The dynamic equilibrium equations were solved using the Newmark integration technique. The non-linear dynamic analysis addressed several functions of changing fibre spacing with various changes in volume percentage and diverse fibre orientations. Fibre orientation, volume fraction fluctuation, and fibre distribution significantly affected laminated composite plates' non-linear dynamic behaviour. This study showed that the combination of improvements does not give a clear vision of the ideal improvement, and the best case for fibre distribution and the best case for layer rotation and combination should be studied to know the effect of the ameliorations one on the other and distinguish the impact of the transverse loading pattern in one direction on rotating the sample layers with axial load in one direction, so that changing the fibre distribution is more effective in the behaviour and stability of the plate by taking advantage of the orientation change, as demonstrated in this paper.


Doi: 10.28991/CEJ-2022-08-12-03

Full Text: PDF


Composite Laminated Plates; Orientation Fibres; Dynamic Stability; Elastic-Plastic Displacement; Response; Oscillations.


Akhavan, H., Ribeiro, P., & De Moura, M. F. S. F. (2013). Large deflection and stresses in variable stiffness composite laminates with curvilinear fibres. International Journal of Mechanical Sciences, 73, 14–26. doi:10.1016/j.ijmecsci.2013.03.013.

Al-Ramahee, M. A., & Abodi, J. T. (2020). Effect of variable fiber spacing on dynamic behavior of a laminated composite plate. Journal of Green Engineering, 10(11), 12663–12677.

Zhu, C. D., & Yang, J. (2019). Free and forced vibration analysis of composite laminated plates. 26th International Congress on Sound and Vibration, 7-11 July, 2019, Montreal, Canada.

Markad, K. M., Das, V., & Lal, A. (2022). Deflection and stress analysis of piezoelectric laminated composite plate under variable polynomial transverse loading. AIP Advances, 12(8), 85024. doi:10.1063/5.0104568.

Martinez, J. R., & Bishay, P. L. (2021). On the stochastic first-ply failure analysis of laminated composite plates under in-plane tensile loading. Composites Part C: Open Access, 4(October), 100102. doi:10.1016/j.jcomc.2020.100102.

Farsadi, T., Asadi, D., & Kurtaran, H. (2021). Fundamental frequency optimization of variable stiffness composite skew plates. Acta Mechanica, 232(2), 555–573. doi:10.1007/s00707-020-02871-9.

Soufeiani, L., Ghadyani, G., Hong Kueh, A. B., & Nguyen, K. T. Q. (2017). The effect of laminate stacking sequence and fiber orientation on the dynamic response of FRP composite slabs. Journal of Building Engineering, 13, 41–52. doi:10.1016/j.jobe.2017.07.004.

Khodzhaev, D. (2019). Dynamic calculation of nonlinear oscillations of viscoelastic orthotropic plate with a concentrated mass. E3S Web of Conferences, 91, 02045. doi:10.1051/e3sconf/20199102045.

El Bouhmidi, A., & Rougui, M. (2018). Analysis of buckling phenomenon of rectangular laminated plates with a hole under different boundary conditions. MATEC Web of Conferences, 149, 02013. doi:10.1051/matecconf/201814902013.

Sharma, S. (2021). Composite Materials: Mechanics, Manufacturing and Modeling. CRC Press< Boca Raton, United States.

Georgantzinos, S. K., Antoniou, P. A., Giannopoulos, G. I., Fatsis, A., & Markolefas, S. I. (2021). Design of laminated composite plates with carbon nanotube inclusions against buckling: Waviness and agglomeration effects. Nanomaterials, 11(9), 2261. doi:10.3390/nano11092261.

Kuo, S. Y., & Shiau, L. C. (2009). Buckling and vibration of composite laminated plates with variable fiber spacing. Composite Structures, 90(2), 196–200. doi:10.1016/j.compstruct.2009.02.013.

Leissa, A. W., & Martin, A. F. (1990). Vibration and buckling of rectangular composite plates with variable fiber spacing. Composite structures, 14(4), 339-357. doi:10.1016/0263-8223(90)90014-6.

Al-Mosawi, A. I. (2013). Effect of variable fiber spacing on post-buckling of boron/epoxy fiber reinforced laminated composite plate. Applied Mechanics and Materials, 245, 126-131. Trans Tech Publications Ltd. doi:10.4028/www.scientific.net/AMM.245.126.

Joshi, R., Pal, P., & Duggal, S. K. (2020). Ply-by-ply failure analysis of laminates using finite element method. European Journal of Mechanics-A/Solids, 81, 103964. doi:10.1016/j.euromechsol.2020.103964.

Ren, B., Wu, C. T., Seleson, P., Zeng, D., Nishi, M., & Pasetto, M. (2022). An FEM-Based Peridynamic Model for Failure Analysis of Unidirectional Fiber-Reinforced Laminates. Journal of Peridynamics and Nonlocal Modeling, 4(1), 139-158. doi:10.1007/s42102-021-00063-0.

Bui, T. Q., & Hu, X. (2021). A review of phase-field models, fundamentals and their applications to composite laminates. Engineering Fracture Mechanics, 248, 107705. doi:10.1016/j.engfracmech.2021.107705.

Azzi, V. D., & Tsai, S. W. (1965). Anisotropic strength of composites. Experimental mechanics, 5(9), 283-288. doi:10.1007/BF02326292.

Hoffman, P. B., & Gibeling, J. C. (1995). Near-threshold fatigue crack growth in aluminum composite laminates. Scripta Metallurgica et Materialia, 32(6), 27989. doi:10.1016/0956-716X(95)93222-P.

Tsai, S. W. (1968). Strength theories of filamentary structures Fundamental aspects of fiber reinforced plastic composites. WileyInterscience, New York, United States.

Rotem, A., & Hashin, Z. (1975). Failure modes of angle ply laminates. Journal of Composite Materials, 9(2), 191-206. doi:10.1177/002199837500900209.

Hashin, Z., & Rotem, A. (1973). A fatigue failure criterion for fiber reinforced materials. Journal of composite materials, 7(4), 448-464. doi:10.1177/00219983730070040.

Martinez, J. R., & Bishay, P. L. (2021). On the stochastic first-ply failure analysis of laminated composite plates under in-plane tensile loading. Composites Part C: Open Access, 4, 100102. doi:10.1016/j.jcomc.2020.100102.

Kumar, R., Lal, A., & Sutaria, B. M. (2020). Non-linear deflection and stress analysis of laminated composite sandwich plate with elliptical cutout under different transverse loadings in hygro-thermal environment. Curved and Layered Structures, 7(1), 80-100. doi:10.1515/cls-2020-0008.

Stegmann, J., & Lund, E. (2001). Structural Analysis of Composite Shell Structures. Institute of Mechanical Engineering, Aalborg University, Aalborg, Denmark.

Ammash, H. K. (2008). Nonlinear Static and Dynamic Analysis of Laminated Plates Under In-plane Forces. Ph.D. Thesis, University of Babylon, Hillah, Iraq.

Full Text: PDF

DOI: 10.28991/CEJ-2022-08-12-03


Copyright (c) 2022 Wisam Hamzah Mohammed

Creative Commons License
This work is licensed under a Creative Commons Attribution 4.0 International License.