Assessing the Compliance of Extrusion Foamed Polystyrene Production with the Environmental Standards Requirements
Abstract
Doi: 10.28991/CEJ-2022-08-10-018
Full Text: PDF
Keywords
References
Tskhovrebov, E. S., & Velichko, E. G. (2017). Ecological Safety of Construction Materials : Basic Historical Stages. Vestnik MGSU, 1(1), 26–35. doi:10.22227/1997-0935.2017.1.26-35.
Mymrin, V. A., Tolmacheva, N. A., Zelinskaya, E. V., Kurina, A. V., & Garashchenko, A. A. (2018). Research on Environmentally Friendly Waste-Based Building Materials. Vestnik MGSU, 9(9), 1143–1153. doi:10.22227/1997-0935.2018.9.1143-1153. (In Russian).
Shehata, N., Mohamed, O. A., Sayed, E. T., Abdelkareem, M. A., & Olabi, A. G. (2022). Geopolymer concrete as green building materials: Recent applications, sustainable development and circular economy potentials. Science of the Total Environment, 155577. doi:10.1016/j.scitotenv.2022.155577.
Chidanand Vijaykumar, B., & Yerukola, P. (2022). Extruded Polystyrene (XPS) Insulation Material Market by Application (Residential Construction and Non-Residential Construction): Global Opportunity Analysis and Industry Forecast, 2020–2027. Allied Market Research. Available online: https://www.alliedmarketresearch.com/extruded-polystyrene-insulation-materials-market (accessed on August 2022).
Ramli Sulong, N. H., Mustapa, S. A. S., & Abdul Rashid, M. K. (2019). Application of expanded polystyrene (EPS) in buildings and constructions: A review. Journal of Applied Polymer Science, 47529. doi:10.1002/app.47529.
Aditya, L., Mahlia, T. M. I., Rismanchi, B., Ng, H. M., Hasan, M. H., Metselaar, H. S. C., Muraza, O., & Aditiya, H. B. (2017). A review on insulation materials for energy conservation in buildings. Renewable and Sustainable Energy Reviews, 73, 1352–1365. doi:10.1016/j.rser.2017.02.034.
Shaumarov, S., Adilkhodjaev, A., & Kondrazhenko, V. (2019). Experimental research of structural organization of heat-insulating structural building materials for energy efficient buildings. E3S Web of Conferences, 97, 02009. doi:10.1051/e3sconf/20199702009.
Anjum, F., Yasin Naz, M., Ghaffar, A., Kamran, K., Shukrullah, S., & Ullah, S. (2022). Sustainable insulating porous building materials for energy-saving perspective: Stones to environmentally friendly bricks. Construction and Building Materials, 318, 125930. doi:10.1016/j.conbuildmat.2021.125930.
Yoo, J., Chang, S. J., Yang, S., Wi, S., Kim, Y. U., & Kim, S. (2021). Performance of the hygrothermal behavior of the CLT wall using different types of insulation; XPS, PF board and glass wool. Case Studies in Thermal Engineering, 24, 100846. doi:10.1016/j.csite.2021.100846.
D’Agostino, D., de’ Rossi, F., Marigliano, M., Marino, C., & Minichiello, F. (2019). Evaluation of the optimal thermal insulation thickness for an office building in different climates by means of the basic and modified “cost-optimal” methodology. Journal of Building Engineering, 24, 100743. doi:10.1016/j.jobe.2019.100743.
Rumiantcev, B. M., Zhukov, A. D., Bobrova, E. Y., Romanova, I. P., Zelenshikov, D. B., & Smirnova, T. V. (2016). The systems of insulation and a methodology for assessing the durability. MATEC Web of Conferences, 86. doi:10.1051/matecconf/20168604036.
Maksimova, O. A., Mikhaylichenko, K. Y., Kurbatova, A. I., Korshunova, A. Y., & Klimakina, A. V. (2017). Ecological safety of building materials, in the production of which production and consumption waste are used (by the example of eco-concrete). Ecology and Industry of Russia, 21(9), 58–63. doi:10.18412/1816-0395-2017-9-58-63.
Bezdenejnyh, M. A., Munieva, E. Y., & Zhukov, A. D. (2017). Influence of Building Materials on the State of Ecology. Components of Scientific and Technological Progress, (4), 18-21.
Ozalp, C., Saydam, D. B., Çerçi, K. N., Hürdoğan, E., & Moran, H. (2019). Evaluation of a sample building with different type building elements in an energetic and environmental perspective. Renewable and Sustainable Energy Reviews, 115, 109386. doi:10.1016/j.rser.2019.109386.
Feng, D., & Zhao, G. (2020). Footprint assessments on organic farming to improve ecological safety in the water source areas of the South-to-North Water Diversion project. Journal of Cleaner Production, 254, 120130. doi:10.1016/j.jclepro.2020.120130.
Ketov, P. A. (2018). Development of Environmentally Safe, Energy Efficient Cellular Construction Material Corresponding To the Principles of Green Construction. Vestnik MGSU, 3(3), 368–377. doi:10.22227/1997-0935.2018.3.368-377.
Generalova, E. M., Generalov, V. P., & Kuznetsova, A. A. (2016). Modular buildings in modern construction. Procedia engineering, 153, 167-172. doi:10.1016/j.proeng.2016.08.098.
Wang, J., Du, J., Zhu, J., & Wilkie, C. A. (2002). An XPS study of the thermal degradation and flame retardant mechanism of polystyrene-clay nanocomposites. Polymer Degradation and Stability, 77(2), 249–252. doi:10.1016/S0141-3910(02)00055-1.
La Mantia, F. P., Morreale, M., Botta, L., Mistretta, M. C., Ceraulo, M., & Scaffaro, R. (2017). Degradation of polymer blends: A brief review. Polymer Degradation and Stability, 145, 79–92. doi:10.1016/j.polymdegradstab.2017.07.011.
Viltres, H., Odio, O. F., Lartundo-Rojas, L., & Reguera, E. (2020). Degradation study of arsenic oxides under XPS measurements. Applied Surface Science, 511, 145606. doi:10.1016/j.apsusc.2020.145606.
Zhigulina, A. Y., & Chumachenko, N. G. (2015). The Selection of Building Materials to Improve the Comfort and Ecological Safety of City Housing. Urban Construction and Architecture, 5(4), 94–99. doi:10.17673/vestnik.2015.04.12.
Kulikova, E. Y. (2016). Assessment of polymer materials environmental compatibility in underground development. Ecology and Industry of Russia, 20(3), 28–31. doi:10.18412/1816-0395-2016-3-28-31.
Khamrokulov, M. G., & Sarimsakov, A. (2019). Influence of the Content of Harmful Substances to the Food Safety of Polymer Packages. Austrian Journal of Technical and Natural Sciences, 7–8, 31–35. doi:10.29013/ajt-19-7.8-31-35.
GOST 32310-2020 (EN 13164+A.1:2015). (2020). Thermal insulation products of extruded polystyrene foam for building. Specifications. Russian Standards & Regulations, Moscow, Russia.
Patel, S. H., & Xanthos, M. (2001). Environmental issues in polymer processing: A review on volatile emissions and material/energy recovery options. Advances in Polymer Technology, 20(1), 22–41. doi:10.1002/1098-2329(200121)20:1<22::AID-ADV1002>3.0.CO;2-O.
Abeykoon, C., McMillan, A., & Nguyen, B. K. (2021). Energy efficiency in extrusion-related polymer processing: A review of state of the art and potential efficiency improvements. Renewable and Sustainable Energy Reviews, 147, 111219. doi:10.1016/j.rser.2021.111219.
Chimanowsky, J. P., Cucinelli Neto, R. P., & Bruno Tavares, M. I. (2015). NMR evaluation of polystyrene nanocomposites degradated by repeated extrusion processing. Polymer Degradation and Stability, 118, 178–187. doi:10.1016/j.polymdegradstab.2015.03.022.
Elefsiniotis, P., & Wareham, D. G. (2005). ISO 14000 Environmental Management Standards: Their relation to sustainability. Journal of Professional Issues in Engineering Education and Practice, 131(3), 208–212. doi:10.1061/(ASCE)1052-3928(2005)131:3(208).
Johnson, G. (2020). The ISO 14000 EMS audit handbook. CRC Press, Boca Raton, United States. doi:10.4324/9780429273025.
Zhuk, P. M., & Zhukov, A. D. (2018). Normative legal base for the environmental assessment of building materials: Prospects for improvement. Ecology and Industry of Russia, 22(4), 52–57. doi:10.18412/1816-0395-2018-4-52-57.
Feng, X., Yang, X., Li, M., Qin, Y., Li, H., & Xie, Y. (2021). Production and method optimization of fluorescent polystyrene. Journal of Molecular Structure, 1243, 130746. doi:10.1016/j.molstruc.2021.130746.
Min, Z., Yang, H., Chen, F., & Kuang, T. (2018). Scale-up production of lightweight high-strength polystyrene/carbonaceous filler composite foams with high-performance electromagnetic interference shielding. Materials Letters, 230, 157–160. doi:10.1016/j.matlet.2018.07.094.
Yeung, C. W. S., Teo, J. Y. Q., Loh, X. J., & Lim, J. Y. C. (2021). Polyolefins and Polystyrene as Chemical Resources for a Sustainable Future: Challenges, Advances, and Prospects. ACS Materials Letters, 3(12), 1660–1676. doi:10.1021/acsmaterialslett.1c00490.
Demirtaş, E., Özkan, H., & Nofar, M. (2018). Extrusion Foaming of High Impact Polystyrene: Effects of Processing Parameters and Materials Composition. International Journal of Material Science and Research, 1(1), 9–15. doi:10.18689/ijmsr-1000102.
Giama, E., & Papadopoulos, A. M. (2020). Benchmarking carbon footprint and circularity in production processes: The case of stonewool and extruded polysterene. Journal of Cleaner Production, 257, 120559. doi:10.1016/j.jclepro.2020.120559.
Tukhtamov, I., Beisebaev, N., Bazhanov, B., Orynbay, A., & Shampikova, A. (2020). Improving the effectiveness of explosives using a dispersed air gap. E3S Web of Conferences, 168, 00017. doi:10.1051/e3sconf/202016800017.
Hittini, W., Mourad, A. H. I., & Abu-Jdayil, B. (2019). Cleaner production of thermal insulation boards utilizing buffing dust waste. Journal of Cleaner Production, 236, 117603. doi:10.1016/j.jclepro.2019.117603.
Doroudiani, S., & Omidian, H. (2010). Environmental, health and safety concerns of decorative mouldings made of expanded polystyrene in buildings. Building and Environment, 45(3), 647–654. doi:10.1016/j.buildenv.2009.08.004.
Ferella, F., Zueva, S., Innocenzi, V., Di Renzo, A., Avveduto, A., Pace, L., Tripodi, P., & Vegliò, F. (2019). New scrubber for air purification: abatement of particulate matter and treatment of the resulting wastewater. International Journal of Environmental Science and Technology, 16(3), 1677–1690. doi:10.1007/s13762-018-1826-4.
DOI: 10.28991/CEJ-2022-08-10-018
Refbacks
- There are currently no refbacks.
Copyright (c) 2022 Liubov Lisienkova, Tatiana Shindina, Liudmila Komarova, Lyudmila Nosova, Dmitry Kozhinov
This work is licensed under a Creative Commons Attribution 4.0 International License.