Interpretation Methods for Seismic Downhole Test in Inclined Boreholes
Abstract
Doi: 10.28991/CEJ-2023-09-10-016
Full Text: PDF
Keywords
References
Wang, J. S., Hwang, J. H., Lu, C. C., & Deng, Y. C. (2022). Measurement uncertainty of shear wave velocity: A case study of thirteen alluvium test sites in Taipei Basin. Soil Dynamics and Earthquake Engineering, 155, 107195. doi:10.1016/j.soildyn.2022.107195.
Miao, Y., He, H., Liu, H., & Wang, S. (2022). Reproducing ground response using in-situ soil dynamic parameters. Earthquake Engineering and Structural Dynamics, 51(10), 2449–2465. doi:10.1002/eqe.3671.
Yang, Z., Liu, X., Guo, L., Cui, Y., Liu, T., Shi, W., & Ling, X. (2022). Effect of silt/clay content on shear wave velocity in the Yellow River Delta (China), based on the cone penetration test (CPT). Bulletin of Engineering Geology and the Environment, 81(1), 28. doi:10.1007/s10064-021-02520-y.
Elbeggo, D., Ethier, Y., Dubé, J. S., & Karray, M. (2022). Critical insights in laboratory shear wave velocity correlations of clays. Canadian Geotechnical Journal, 59(6), 935–951. doi:10.1139/cgj-2020-0033.
Baziw, E. J. (2002). Derivation of seismic cone interval velocities utilizing forward modeling and the downhill simplex method. Canadian Geotechnical Journal, 39(5), 1181–1192. doi:10.1139/t02-061.
Baziw, E., & Verbeek, G. (2022). Incorporation of SH source wave parameter “SH Polarization” within DST seismic trace characterization. Cone Penetration Testing 2022, 109–114. doi:10.1201/9781003308829-8.
Kim, D. S., Bang, E. S., & Kim, W. C. (2004). Evaluation of various downhole data reduction methods for obtaining reliable VS profiles. Geotechnical Testing Journal, 27(6), 585–597. doi:10.1520/gtj11811.
Ullah, S., Younas, S. W., Asim, M., Fahad, M., & Fahim, M. (2022). Site Effects Study in the Peshawar District using Seismic Noise. Civil Engineering Journal, 8(4), 751-764. doi:10.28991/CEJ-2022-08-04-010.
Chu, J., Wu, S. F., Chen, H., Pan, X. H., & Chiam, K. (2021). New Solutions to Geotechnical Challenges for Coastal Cities. Geotechnical Engineering Journal of the SEAGS & AGSSEA, 52(1), 61-66.
Prasad, B.N.V.S., Murthy, V.M.S.R., & Naik, S.R. (2022). Challenges in Drill Equipment Selection vis-à-vis Underground Excavations – A Methodology. Proceedings of Geotechnical Challenges in Mining, Tunneling and Underground Infrastructures, ICGMTU 2021, Lecture Notes in Civil Engineering, 228. Springer, Singapore. doi:10.1007/978-981-16-9770-8_9.
Hasan, M., Shang, Y., Shao, P., Yi, X., & Meng, H. (2022). Evaluation of Engineering Rock Mass Quality via Integration Between Geophysical and Rock Mechanical Parameters. Rock Mechanics and Rock Engineering, 55(4), 2183–2203. doi:10.1007/s00603-021-02766-8.
Stephenson, W. J., Yong, A., & Martin, A. (2022). Flexible multimethod approach for seismic site characterization. Journal of Seismology, 26(4), 687–711. doi:10.1007/s10950-022-10102-y.
Moran, A. R., & Hettiarachchi, H. (2011). Geotechnical characterization of mined clay from Appalachian Ohio: Challenges and implications for the clay mining industry. International Journal of Environmental Research and Public Health, 8(7), 2640–2655. doi:10.3390/ijerph8072640.
Crice, D. (2011). Near-surface, downhole shear-wave surveys: A primer. The Leading Edge, 30(2), 164–171. doi:10.1190/1.3555327.
Martin, G. K., & Mayne, P. W. (1997). Seismic Flat Dilatometer Tests in Connecticut Valley Varved Clay. Geotechnical Testing Journal, 20(3), GTJ19970011. doi:10.1520/gtj19970011.
Campanella, R. G., & Stewart, W. P. (1992). Seismic cone analysis using digital signal processing for dynamic site characterization. Canadian Geotechnical Journal, 29(3), 477–486. doi:10.1139/t92-052.
Saad, R., & Mohamad, E. T. (2014). Dynamic soil properties study using seismic down-hole geophysical method. Electronic Journal of Geotechnical Engineering, 19(Z2), 9931–9939.
Parasie, N., Franken, T., & Peuchen, J. (2022). Assessment of seismic cone penetration testing for small strain shear modulus. Cone Penetration Testing 2022, 203–208, CRC Press, Boca Raton, United States. doi:10.1201/9781003308829-23.
Kramer, S. L. (1996). Geotechnical earthquake engineering. Pearson Education India, Noida, India.
Markvorsen, S., & Pendás-Recondo, E. (2023). Snell’s law revisited and generalized via Finsler geometry. International Journal of Geometric Methods in Modern Physics, 20(08). doi:10.1142/s0219887823501384.
Hallal, M. M., & Cox, B. R. (2019). Theoretical Evaluation of the Interval Method Commonly Used for Downhole Seismic Testing. Geo-Congress 2019. doi:10.1061/9780784482131.038.
Auld, B. (1978). Cross-hole and down-hole vs by mechanical impulse. International Journal of Rock Mechanics and Mining Sciences & Geomechanics Abstracts, 15(3), 67. doi:10.1016/0148-9062(78)90209-7.
Batsila, E. (1995). Investigation of ray path assumptions on downhole velocity profiles. PhD Thesis, University of Texas at Austin, Austin, United States.
Bang, E. S., & Kim, D. S. (2007). Improvement of Data Interpretation Method for Downhole Seismic Method. 4th International Conference on Earthquake Geotechnical Engineering, 25-29, June, 2007, Thessaloniki, Greece.
Edwards, C.H. (1979). The Calculus According to Cauchy, Riemann, and Weierstrass. The Historical Development of the Calculus. Springer Study Edition. Springer, New York, United States. doi:10.1007/978-1-4612-6230-5_11.
Dixit, N. D., & Mathur, P. K. (2021). Comparision of Numerical Accuracy of Bisection, Newton Raphson, Falsi-Position and Secant Methods. Advances in Mathematics: Scientific Journal, 10. doi:10.37418/amsj.10.12.13.
Bóna, A., & Slawinski, M. A. (2003). Fermat’s principle for seismic rays in elastic media. Journal of Applied Geophysics, 54(3–4), 445–451. doi:10.1016/j.jappgeo.2003.08.019.
O’reilly, O., Yeh, T. Y., Olsen, K. B., Hu, Z., Breuer, A., Roten, D., & Goulet, C. A. (2022). A High-Order Finite-Difference Method on Staggered Curvilinear Grids for Seismic Wave Propagation Applications with Topography. Bulletin of the Seismological Society of America, 112(1), 3–22. doi:10.1785/0120210096.
Noye, J. (1984). Finite Difference Techniques for Partial Differential Equations. North-Holland Mathematics Studies, 95–354, Elsevier, Amsterdam, Netherlands. doi:10.1016/S0304-0208(08)71201-5.
Esmailzadeh, M., Najafi, H. S., & Aminikhah, H. (2021). A numerical method for solving hyperbolic partial differential equations with piecewise constant arguments and variable coefficients. Journal of Difference Equations and Applications, 27(2), 172–194. doi:10.1080/10236198.2021.1881069.
Akujuobi, C. M. (2022). Wavelets and Wavelet Transform Systems and Their Applications: A Digital Signal Processing Approach. Springer, Cham, Switzerland. doi:10.1007/978-3-030-87528-2.
DOI: 10.28991/CEJ-2023-09-10-016
Refbacks
- There are currently no refbacks.
Copyright (c) 2023 Pedro Bautista, Zenon Aguilar

This work is licensed under a Creative Commons Attribution 4.0 International License.