Performance of Mortar Incorporating Heat-Treated Drinking Water Treatment Sludge as a Silica-Sand Replacement

Mohammad Al-Rawashdeh, Ahmed Alzoubi, Shadi Hanandeh, Isam Yousef, Mohammad Al-Nawaiseh


This paper examines the possibility of using water purification wastes in the production of mortar. Within the study context, XRD and XRF analyses were performed to obtain the chemical composition of sludge. Moreover, heat-treated sludge at a temperature of 900ºC was used in the preparation of mortar mixes as a partial sand replacement (5, 10, 15, and 20% by sand weight) with a w/c of 0.48. Fresh mortars were tested for workability, and mortar samples with 7, 28, and 90 days curing ages were tested for dry density, absorption, ultrasonic pulse velocity (UPV), and compressive and flexural strengths. Besides, some regression modeling was conducted for each of the measured parameters. In general, the results showed that the use of up to 10% incinerated sludge by sand weight leads to a slight decrease in the workability and density of the mixture and a 10% increase in its strength. Nevertheless, mortars with sludge content of over 10% showed a significant increase in water absorption and a decrease in strength and other properties.


Doi: 10.28991/CEJ-2022-08-08-08

Full Text: PDF


Water Purification; Incinerated Sludge; XRD and XRF; Sludge Management; Sand Mining; Absorption Test.


Bendixen, M., Best, J., Hackney, C., & Iversen, L. L. (2019). Time is running out for sand. Nature, 571(7763), 29–31. doi:10.1038/d41586-019-02042-4.

U.S. Geological Survey. (2022). Minerals Yearbook, volume I, Metals and Minerals. Minerals Yearbook. National Minerals Information Center, U.S. Geological Survey, Reston, United States.doi:10.3133/mybvi.

Pitchaiah, P. S. (2017). Impacts of Sand Mining on Environment–A Review. International Journal of Geoinformatics and Geological Science, 4(1), 1–6. doi:10.14445/23939206/ijggs-v4i1p101.

Dudley, B. (2018). BP energy outlook. Report–BP Energy Economics. London, United Kingdom.

Ahmad, T., Ahmad, K., & Alam, M. (2017). Sludge quantification at water treatment plant and its management scenario. Environmental Monitoring and Assessment, 189(9), 1–10. doi:10.1007/s10661-017-6166-1.

Łukasiewicz, E. (2016). Post-coagulation sludge management for water and wastewater treatment with focus on limiting its impact on the environment. Economic and Environmental Studies (E&ES), 16(4), 831-841.

Bohórquez González, K., Pacheco, E., Guzmán, A., Avila Pereira, Y., Cano Cuadro, H., & Valencia, J. A. F. (2020). Use of sludge ash from drinking water treatment plant in hydraulic mortars. Materials Today Communications, 23, 100930. doi:10.1016/j.mtcomm.2020.100930.

Alzoubi, A. E., Ghunimat, D. M., Al-Rawashdeh, M., & Hanandeh, S. (2021). The potential of using water purification wastes as fine aggregates in concrete mixes: an initial study. Australian Journal of Civil Engineering, 19(2), 148–154. doi:10.1080/14488353.2020.1835148.

Rodrigues, L. P., & Holanda, J. N. F. (2015). Recycling of Water Treatment Plant Waste for Production of Soil-Cement Bricks. Procedia Materials Science, 8, 197–202. doi:10.1016/j.mspro.2015.04.064.

Godoy, L. G. G. de, Rohden, A. B., Garcez, M. R., Da Dalt, S., & Bonan Gomes, L. (2020). Production of supplementary cementitious material as a sustainable management strategy for water treatment sludge waste. Case Studies in Construction Materials, 12, e00329. doi:10.1016/j.cscm.2020.e00329.

Kizinievič, O., Žurauskiene, R., Kizinievič, V., & Žurauskas, R. (2013). Utilisation of sludge waste from water treatment for ceramic products. Construction and Building Materials, 41, 464–473. doi:10.1016/j.conbuildmat.2012.12.041.

Chen, H. X., Ma, X., & Dai, H. J. (2010). Reuse of water purification sludge as raw material in cement production. Cement and Concrete Composites, 32(6), 436–439. doi:10.1016/j.cemconcomp.2010.02.009.

Liu, Y., Zhuge, Y., Chow, C. W. K., Keegan, A., Li, D., Pham, P. N., Huang, J., & Siddique, R. (2020). Utilization of drinking water treatment sludge in concrete paving blocks: Microstructural analysis, durability and leaching properties. Journal of Environmental Management, 262, 110352. doi:10.1016/j.jenvman.2020.110352.

Yavuz Bayraktar, O., Kaplan, G., Gencel, O., Benli, A., & Sutcu, M. (2021). Physico-mechanical, durability and thermal properties of basalt fiber reinforced foamed concrete containing waste marble powder and slag. Construction and Building Materials, 288, 123128. doi:10.1016/j.conbuildmat.2021.123128.

ASTM C778-17. (2021). Standard Specification for Standard Sand. ASTM International, Pennsylvania, United States. doi:10.1520/C0778-17.

BS EN 1015-10:1999. (1999). Methods of test for mortar for masonry Determination of dry bulk density of hardened mortar. British Standard Institution, London, United Kingdom.

ASTM C1403-15. (2022). Standard Test Method for Rate of Water Absorption of Masonry Mortars. ASTM International, Pennsylvania, United States. doi:10.1520/C1403-15.

Dunster, A. M. (2007). Incinerated sewage sludge ash (ISSA) in autoclaved aerated concrete (AAC). Characterization of Mineral Wastes, Resources and Processing Technologies-Integrated Waste Management for the Production of Construction Material WRT, 177.

Li, D., Zhuge, Y., Liu, Y., Pham, P. N., Zhang, C., Duan, W., & Ma, X. (2021). Reuse of drinking water treatment sludge in mortar as substitutions of both fly ash and sand based on two treatment methods. Construction and Building Materials, 277, 122330. doi:10.1016/j.conbuildmat.2021.122330.

Vouk, D., Nakic, D., Stirmer, N., & Cheeseman, C. R. (2017). Use of sewage sludge ash in cementitious materials. Reviews on advanced materials science, 49(2).

Agarwal, S. C. Waste—a Gateway to the Future Economy of Kotash Stone Industry in India.

Monzó, J., Payá, J., Borrachero, M. V., & Girbés, I. (2003). Reuse of sewage sludge ashes (SSA) in cement mixtures: The effect of SSA on the workability of cement mortars. Waste Management, 23(4), 373–381. doi:10.1016/S0956-053X(03)00034-5.

Silva, A. P. T. da, Silva, L. R. R. da, Ribeiro, V. A. dos S., Melo, M. de L. N. M., Gonçalves, P. C., Martins, M. V. L., Santos, V. C. dos, & Souza, M. H. B. de. (2022). Use of water treatment sludge in Self-Compacting Mortar (SCM). Research, Society and Development, 11(2), e0111225112. doi:10.33448/rsd-v11i2.25112.

Al-Zboon, K., & Al-Zou’by, J. (2015). Recycling of stone cutting slurry in concrete mixes. Journal of Material Cycles and Waste Management, 17(2), 324–335. doi:10.1007/s10163-014-0246-x.

Payá, J., Monzó, J., Borrachero, M. V., Amahjour, F., Girbés, I., Velázquez, S., & Ordónez, L. M. (2002). Advantages in the use of fly ashes in cements containing pozzolanic combustion residues: Silica fume, sewage sludge ash, spent fluidized bed catalyst and rice husk ash. Journal of Chemical Technology and Biotechnology, 77(3), 331–335. doi:10.1002/jctb.583.

Malaiskiene, J., Skripkiunas, G., Vaiciene, M., & Karpova, E. (2017). The influence of aggregates type on w/c ratio on the strength and other properties of concrete. IOP Conference Series: Materials Science and Engineering, 251(1), 12025. doi:10.1088/1757-899X/251/1/012025.

Andrade, J. J. de O., Possan, E., ChiaradiaWenzel, M., & da Silva, S. R. (2019). Feasibility of using calcined water treatment sludge in rendering mortars: A technical and sustainable approach. Sustainability (Switzerland), 11(13), 3576. doi:10.3390/su11133576.

Ramirez, K. G., Possan, E., Dezen, B. G. dos S., & Colombo, M. (2017). Potential uses of waste sludge in concrete production. Management of Environmental Quality: An International Journal, 28(6), 821–838. doi:10.1108/MEQ-09-2015-0178.

Kesikidou, F., Konopisi, S., & Anastasiou, E. K. (2021). Influence of Concrete Sludge Addition in the Properties of Alkali-Activated and Non-Alkali-Activated Fly Ash-Based Mortars. Advances in Civil Engineering, 2021, 1-14. doi:10.1155/2021/5534002.

Al Houri, A., Habib, A., Elzokra, A., & Habib, M. (2020). Tensile testing of soils: History, equipment and methodologies. Civil Engineering Journal (Iran), 6(3), 591–601. doi:10.28991/cej-2020-03091494.

de Oliveira Andrade, J. J., Wenzel, M. C., da Rocha, G. H., & da Silva, S. R. (2018). Performance of rendering mortars containing sludge from water treatment plants as fine recycled aggregate. Journal of Cleaner Production, 192, 159–168. doi:10.1016/j.jclepro.2018.04.246.

Liang, C., Le, X., Fang, W., Zhao, J., Fang, L., & Hou, S. (2022). The Utilization of Recycled Sewage Sludge Ash as a Supplementary Cementitious Material in Mortar: A Review. Sustainability (Switzerland), 14(8), 4432. doi:10.3390/su14084432.

Donatello, S., Tyrer, M., & Cheeseman, C. R. (2010). Comparison of test methods to assess pozzolanic activity. Cement and Concrete Composites, 32(2), 121–127. doi:10.1016/j.cemconcomp.2009.10.008.

Praveen Kumar, V. V., & Ravi Prasad, D. (2019). Influence of Supplementary Cementitious Materials on Strength and Durability Characteristics of Concrete. Advances in Concrete Construction, 7(2), 75–85. doi:10.12989/acc.2019.7.2.075.

Corinaldesi, V., Moriconi, G., & Naik, T. R. (2010). Characterization of marble powder for its use in mortar and concrete. Construction and Building Materials, 24(1), 113–117. doi:10.1016/j.conbuildmat.2009.08.013.

Pan, S. C., Tseng, D. H., Lee, C. C., & Lee, C. (2003). Influence of the fineness of sewage sludge ash on the mortar properties. Cement and Concrete Research, 33(11), 1749–1754. doi:10.1016/S0008-8846(03)00165-0.

Chen, Z., & Poon, C. S. (2017). Comparing the use of sewage sludge ash and glass powder in cement mortars. Environmental Technology (United Kingdom), 38(11), 1390–1398. doi:10.1080/09593330.2016.1230652.

Fontes, C. M. A., Toledo Filho, R. D., & Barbosa, M. C. (2016). Sewage sludge ash (SSA) in high performance concrete: characterization and application. Revista IBRACON de Estruturas e Materiais, 9(6), 989–1006. doi:10.1590/s1983-41952016000600009.

Almeida, N., Branco, F., & Santos, J. R. (2007). Recycling of stone slurry in industrial activities: Application to concrete mixtures. Building and Environment, 42(2), 810–819. doi:10.1016/j.buildenv.2005.09.018.

Donatello, S., & Cheeseman, C. R. (2013). Recycling and recovery routes for incinerated sewage sludge ash (ISSA): A review. Waste Management, 33(11), 2328–2340. doi:10.1016/j.wasman.2013.05.024.

Wang, K. S., Chiou, I. J., Chen, C. H., & Wang, D. (2005). Lightweight properties and pore structure of foamed material made from sewage sludge ash. Construction and Building Materials, 19(8), 627–633. doi:10.1016/j.conbuildmat.2005.01.002.

Duan, W., Zhuge, Y., Pham, P. N., Chow, C. W. K., Keegan, A., & Liu, Y. (2020). Utilization of drinking water treatment sludge as cement replacement to mitigate alkali–silica reaction in cement composites. Journal of Composites Science, 4(4), 171. doi:10.3390/jcs4040171.

Full Text: PDF

DOI: 10.28991/CEJ-2022-08-08-08


  • There are currently no refbacks.

Copyright (c) 2022 Mohammad Al-Rawashdeh, Ahmed Alzoubi, Shadi Hanandeh, Isam Yousef, Mohammad Al-Nawaiseh

Creative Commons License
This work is licensed under a Creative Commons Attribution 4.0 International License.