Storm Surges and Extreme Wind Waves in the Caspian Sea in the Present and Future Climate

Anna Pavlova, Stanislav Myslenkov, Victor Arkhipkin, Galina Surkova


The Caspian Sea is of particular interest. Against the background of long-term sea level changes, low-lying coastal areas in the northern part are subject to constant flooding as a result of storm surges. The elongation of the sea in the meridional direction allows the development of strong waves in the middle and southern parts. A comprehensive understanding of the characteristics of storm surges and storm waves is especially important in the context of ongoing climate change. This study is devoted to the analysis of storm surges for the time period from 1979 up to 2017 and wind waves from 1979 to 2020 in the Caspian Sea region. The circulation model ADCIRC and the wave model WAVEWATCH III with wind and pressure forcing from the NCEP/CFSR reanalysis were used. The modeling is performed on different unstructured grids with spacings of 500–900 m in the coastal zone. Mean and extreme values of surges, wave parameters and storm activity are provided in the research. The maximum significant wave height for the whole period was 8.2 m. The average long-term SWH did not exceed 1.1 m. No significant trends in the storm activity were found. The maximum surge height was 2.7 m. The analysis of the interannual variability of the surges' occurrence showed that 7–10 surges with a height of more than 1 meter were detected every year. The total duration of these surges was 20–30 days per year. Assessment of the risks of coastal flooding was carried out by calculating the extreme values of the sea for different return periods: 5, 10, 25, 50, and 100 years. The extreme sea level values in the northern part of the Caspian Sea for the 100-year return period are close to 3 m, and the areas with big surges are located along the eastern and western coasts. A forecast is made for the recurrence of storm wind waves in the 21st century based on climatic scenarios in CMIP5. A statistically significant increase in the recurrence of storm waves is to be expected in the near future, but that increase is not severe.


Doi: 10.28991/CEJ-2022-08-11-01

Full Text: PDF


Storm Surge; Wind Waves; ADCIRC; WAVEWATCH III; Caspian Sea; Wave Climate; Unstructured Grid; Climate Change.


Leroy, S. A. G., Gracheva, R., & Medvedev, A. (2022). Natural hazards and disasters around the Caspian Sea. Natural Hazards. doi:10.1007/s11069-022-05522-5.

Imrani, Z., Safarov, S., & Safarov, E. (2022). Analysis of Wind-wave Characteristics of the Caspian Sea Based on Reanalysis Data. Russian Meteorology and Hydrology, 47(6), 479–484. doi:10.3103/s1068373922060085.

Bolgov, M. V., Krasnozhon, G. F., & Lyubushin, A. A. (2007). The Caspian Sea: Extreme Hydrological Events. Nauka, Moscow, Russia. (In Russian).

Baidin, S. S., & Kosarev, A. N. (1986). The Caspian Sea: Hydrology and Hydrochemistry. Nauka, Moscow, Russia. (In Russian).

Nesterov, E. S. (2016). Water Balance and Fluctuations of the Caspian Sea Level. Modeling and Forecasting. Triada LTD, Moscow, Russia. (In Russian).

Nesterov, E. S., Popov, S. K., & Lobov, A. L. (2018). Statistical Characteristics and Modeling of Storm Surges in the North Caspian Sea. Russian Meteorology and Hydrology, 43(10), 664–669. doi:10.3103/S1068373918100059.

Molavi-Arabshahi, M., & Arpe, K. (2022). Interactions between the Caspian Sea size (level) and atmospheric circulation. International Journal of Climatology. doi:10.1002/joc.7852.

Skriptunov, N. A. (1958). Hydrology of the pre-mouth Volga coastal waters. Gidrometeoizdat, Moscow, Russia. (In Russian).

Gershtansky, N. D. (1973). Properties of wind-surges water level fluctuations in the wellhead seashore of Volga. SOI Proceedings, 116, 131-145. (In Russian).

Zil’bershtein, O. I., Popov, S. K., Chumakov, M. M., & Safronov, G. F. (2001). A Procedure for Calculating Extreme Characteristics of the Northern Caspian Sea Level. Water Resources, 28(6), 632–639. doi:10.1023/A:1012833712510.

Verbitskaya, O. A., Zilberstein, O. I., & Popov, S. K. (2002). Method of short-term hydrodynamic forecasting of storm surges in the north part of the Caspian Sea and results its testing. Informational Collection, 29, 76-89. (In Russian).

Bhaskaran, P. K., Nayak, S., Bonthu, S. R., Murty, P. L. N., & Sen, D. (2013). Performance and validation of a coupled parallel ADCIRC-SWAN model for THANE cyclone in the Bay of Bengal. Environmental Fluid Mechanics, 13(6), 601–623. doi:10.1007/s10652-013-9284-5.

Wang, S., Mu, L., Yao, Z., Gao, J., Zhao, E., & Wang, L. (2021). Assessing and zoning of typhoon storm surge risk with a geographic information system (GIS) technique: A case study of the coastal area of Huizhou. Natural Hazards and Earth System Sciences, 21(1), 439–462. doi:10.5194/nhess-21-439-2021.

Mofidi, J., & Rashidi Ebrahim Hesari, A. (2018). Numerical Simulation of the Wind-Induced Current in the Caspian Sea. International Journal of Coastal and Offshore Engineering, 2(1), 67–77. doi:10.29252/ijcoe.2.1.67.

Dietrich, J. C., Tanaka, S., Westerink, J. J., Dawson, C. N., Luettich, R. A., Zijlema, M., Holthuijsen, L. H., Smith, J. M., Westerink, L. G., & Westerink, H. J. (2012). Performance of the unstructured-mesh, SWAN+ ADCIRC model in computing hurricane waves and surge. Journal of Scientific Computing, 52(2), 468–497. doi:10.1007/s10915-011-9555-6.

Federico, I., Pinardi, N., Coppini, G., Oddo, P., Lecci, R., & Mossa, M. (2017). Coastal ocean forecasting with an unstructured grid model in the southern Adriatic and northern Ionian seas. Natural Hazards and Earth System Sciences, 17(1), 45–59. doi:10.5194/nhess-17-45-2017.

Bohluly, A., Esfahani, F. S., Montazeri Namin, M., & Chegini, F. (2018). Evaluation of wind induced currents modeling along the Southern Caspian Sea. Continental Shelf Research, 153, 50–63. doi:10.1016/j.csr.2017.12.008.

Ambrosimov A. K., & Ambrosimov, S. A. (2008). Experimental Studies of Wind Waves in the Central Caspian Sea,” Ekologicheskie Sistemy i Pribory, 10. (In Russian).

Lopatoukhin, L. I., Boukhanovsky, A. V., Degtyarev, A. B., & Rozhkov, V. (2003). Wind and Wave Climate in the Okhotsk, Barents and Caspian Seas. Handbook. Russian Maritime Register of Shipping. (In Russian).

Gippius, F., Arkhipkin, V. S., & Frolov, A. V. (2016). Seasonal variations of evaporation from the Caspian Sea surface with account of wind waves and sea depth. Moscow University Bulletin, Geography, 5, 86-92. (In Russian).

Yaitskaya N. A. (2017). Hindcasting of Wind Waves in the Caspian Sea in the Second Half of the 20th Century–Beginning of the 21st Century and Its Connection with Regional Climate Change. Geograficheskii Vestnik, 2. (In Russian).

Amirinia, G., Kamranzad, B., & Mafi, S. (2017). Wind and wave energy potential in southern Caspian Sea using uncertainty analysis. Energy, 120, 332–345. doi:10.1016/

Amini, E., Asadi, R., Golbaz, D., Nasiri, M., Naeeni, S. T. O., Nezhad, M. M., Piras, G., & Neshat, M. (2021). Comparative study of oscillating surge wave energy converter performance: a case study for southern coasts of the Caspian Sea. Sustainability (Switzerland), 13(19), 10932. doi:10.3390/su131910932.

Jandaghi Alaee, M., Golshani, A., Nakhaee, A., Taebi, S., Chegini, V., &. Jandaghi, A. V. (2005). Wave Hindcast Study of the Caspian Sea. Journal of Marine Engineering, 1(2), 55-61.

Kudryavtseva, N., Kussembayeva, K., Rakisheva, Z. B., & Soomere, T. (2019). Spatial variations in the Caspian Sea wave climate in 2002–2013 from satellite altimetry. Estonian Journal of Earth Sciences, 68(4), 225–240. doi:10.3176/earth.2019.16.

Van Vledder, G. P., & Akpinar, A. (2015). Wave model predictions in the Black Sea: Sensitivity to wind fields. Applied Ocean Research, 53, 161–178. doi:10.1016/j.apor.2015.08.006.

Efimov V. V., Komarovskaya, O. I. & Naumova, V. A. (2004). Statistical Estimation of Reanalysis Wind Data Based on Data of Wind Observations at Weather Stations on the Northern Coast of the Black Sea. Environmental Control Systems (MGI, Sevastopol, 2004) (In Russian).

Medvedeva, A. Y., Arkhipkin, V. S., Myslenkov, S. A., & Zilitinkevich, S. S. (2016). Wave climate of the Baltic Sea following the results of the SWAN spectral model application. Vestnik Moskovskogo Universiteta. Seriya 5, Geografiya, (1), 12-22. (In Russian).

Myslenkov, S. A., Platonov, V. S., Toropov, P. A., & Shestakova, A. A. (2015). Simulation of storm waves in the Barents Sea. Moscow University Bulletin, Series 5. Geography, 6, 65-75. (In Russian).

Medvedeva, A., Myslenkov, S., Medvedev, I., Arkhipkin, V., Krechik, V., & Dobrolyubov, S. (2016). Numerical modeling of the wind waves in the Baltic Sea using the rectangular and unstructured grids and the reanalysis NCEP/CFSR. Proceedings of the Hydrometeorological Research Center of the Russian Federation, 362, 37-54. (In Russian).

Bruneau, N., & Toumi, R. (2016). A fully-coupled atmosphere-ocean-wave model of the Caspian Sea. Ocean Modelling, 107, 97–111. doi:10.1016/j.ocemod.2016.10.006.

Kislov, A. V., Surkova, G. V., & Arkhipkin, V. S. (2016). Occurence Frequency of Storm Wind Waves in the Baltic, Black, and Caspian Seas under Changing Climate Conditions. Russian Meteorology and Hydrology, 41(2), 121–129. doi:10.3103/S1068373916020060.

Surkova, G., Arkhipkin, V., & Kislov, A. (2013). Atmospheric circulation and storm events in the Black Sea and Caspian Sea. Open Geosciences, 5(4), 548–559. doi:10.2478/s13533-012-0150-7.

Rusu, E., & Onea, F. (2013). Evaluation of the wind and wave energy along the Caspian Sea. Energy, 50(1), 1–14. doi:10.1016/

Ivkina, N. I., & Galaeva, A. V. (2017). Forecasting Wind Waves in the Caspian Sea with the SWAN Model. Gidrometeorologiya i Ekologiya, 2. (In Russian).

Strukov B. S., Zelen’ko, A. A., Resnyanskii, Y. D., & Martynov, S. L. (2013). Wind Wave Forecasting System and Results of Its Testing for the Azov, Black, and Caspian Seas. Information Collection, New Technologies, Models, and Methods of Hydrodynamic Forecasting and Results of Their Operational Tests. 40. (In Russian).

Zamani, A., Azimian, A., Heemink, A., & Solomatine, D. (2009). Wave height prediction at the Caspian Sea using a data-driven model and ensemble-based data assimilation methods. Journal of Hydroinformatics, 11(2), 154–164. doi:10.2166/hydro.2009.043.

Field, C. B., Barros, V., Stocker, T. F., & Dahe, Q. (Eds.). (2012). Managing the Risks of Extreme Events and Disasters to Advance Climate Change Adaptation. Cambridge University Press, Cambridge, United Kingdom. doi:10.1017/cbo9781139177245.

Pörtner, H. O., Roberts, D. C., Masson-Delmotte, V., Zhai, P., Tignor, M., Poloczanska, E., ... & Weyer, N. M. (2019). Technical summary. IPCC special report on the ocean and cryosphere in a changing climate. Cambridge University Press, Cambridge, United Kingdom. doi:10.1017/9781009157964.002.

Pavlova, A. V., Arkhipkin, V. S., & Myslenkov, S. A. (2020). Storm surge modeling in the Caspian Sea using an unstructured grid. Russian Journal of Earth Sciences, 20(1). doi:10.2205/2019ES000688.

Myslenkov, S. A., Arkhipkin, V. S., Pavlova, A. V., & Dobrolyubov, S. A. (2018). Wave Climate in the Caspian Sea Based on Wave Hindcast. Russian Meteorology and Hydrology, 43(10), 670–678. doi:10.3103/S1068373918100060.

Luettich, R. A., & Westerink, J. J. (2004). Formulation and numerical implementation of the 2D/3D ADCIRC finite element model version 44. XX.

Luettich, R. A., Westerink, J. J., & Scheffner, N. W. (1992). ADCIRC: an advanced three-dimensional circulation model for shelves, coasts, and estuaries. Report No. 1, Theory and methodology of ADCIRC-2DD1 and ADCIRC-3DL. Coastal Engineering Research Center, United States.

Westerink, J. J., Luettich Jr, R. A., Blain, C. A., & Scheffner, N. W. (1994). Adcirc: an advanced three-dimensional circulation model for shelves, coasts, and estuaries. Report 2. User’s manual for adcirc-2ddi. Army Engineer Waterways Experiment Station Vicksburg Ms. Coastal Engineering Research Center, United States.

Ivanova, A. A., Arkhipkin, V. S., Myslenkov, S. A., & Shevchenko, G. V. (2016). Modeling of storm surges in the coastal zone of the Sakhalin Island. Vestnik Moskovskogo Universiteta. Seriya 5, Geografiya, (3), 41-49. (In Russian)

Myslenkov, S. A., Stoliarova, E. V., Markina, M. Y., Kiseleva, S. V., Arkhipkin, V. S., Gorlov, A. A., & Umnov, P. M. (2017). Seasonal and Interannual Variability of the Wave Energy Flow in the Barents Sea. Alternative Energy and Ecology (ISJAEE), 19–21, 36–48. doi:10.15518/isjaee.2017.19-21.036-048. (In Russian).

Saha, S., Moorthi, S., Pan, H.-L., Wu, X., Wang, J., Nadiga, S., Tripp, P., Kistler, R., Woollen, J., Behringer, D., Liu, H., Stokes, D., Grumbine, R., Gayno, G., Wang, J., Hou, Y.-T., Chuang, H., Juang, H.-M. H., Sela, J., … Goldberg, M. (2010). The NCEP Climate Forecast System Reanalysis. Bulletin of the American Meteorological Society, 91(8), 1015–1058. doi:10.1175/2010bams3001.1.

Saha, S., Moorthi, S., Wu, X., Wang, J., Nadiga, S., Tripp, P., Behringer, D., Hou, Y. T., Chuang, H. Y., Iredell, M., Ek, M., Meng, J., Yang, R., Mendez, M. P., Van Den Dool, H., Zhang, Q., Wang, W., Chen, M., & Becker, E. (2014). The NCEP climate forecast system version 2. Journal of Climate, 27(6), 2185–2208. doi:10.1175/JCLI-D-12-00823.1.

EUMETSAT Ocean and Sea Ice Satellite Application Facility. (1996). Global Sea Ice Concentration Climate Data Record 1979–2015 (v2. 0, 2017),. doi:10.15770/EUM_SAF_OSI_0008.

Fendereski, F. (2021). Sea ice phenology in the Caspian Sea. Advances in Oceanography and Limnology, 12(1). doi:10.4081/aiol.2021.9704.

GOSR R 58112-2018. (2018). National standard of the Russian Federation. Oil and gas industry. Arctic Operations. Ice Management. Collection of Hydrometeorological Data, Moscow, Russia. (In Russian).

Tolman, H. L. (2014). the WAVEWATCH III Development Group: User manual and system documentation of WAVEWATCH III version 4.18. Technical Note, Environmental Modeling Center, National Centers for Environmental Prediction, National Weather Service, National Oceanic and Atmospheric Administration, US Department of Commerce, College Park, United States.

Myslenkov, S., Platonov, V., Kislov, A., Silvestrova, K., & Medvedev, I. (2021). Thirty-nine-year wave hindcast, storm activity, and probability analysis of stormwaves in the Kara Sea, Russia. Water (Switzerland), 13(5), 648. doi:10.3390/w13050648.

Myslenkov, S. A., Medvedeva, A., Arkhipkin, V., Markina, M., Surkova, G., Krylov, A., Dobrolyubov, S., Zilitinkevich, S., & Koltermann, P. (2018). Long-term statistics of storms in the baltic, barents and white seas and their future climate projections. Geography, Environment, Sustainability, 11(1), 93–112. doi:10.24057/2071-9388-2018-11-1-93-112.

Platonov, V. S., Myslenkov, S. A., Arkhipkin, V. S., & Kislov, A. V. (2022). High-Resolution Modelling of the Hydrometeorological Fields over the Kara Sea Coastal Regions in Complex Coastline Conditions. Vestnik Moskovskogo Universiteta, Seriya Geografiya, 5(1), 87–106.

Ivanov V.V., Arkhipkin V.S., Lemeshko YE.M., Myslenkov S.A., Smirnov A.V., Surkova G.V., Tuzov F.K., Chechin D.G., Shestakova A.A. (2022) Changes in hydrometeorological conditions in the Barents sea as an indicator of climatic trends in the eurasian arctic in the 21stcentury. Moscow University Bulletin. Series 5. Geography (1), 13-25.

De Leo, F., Solari, S., & Besio, G. (2020). Extreme wave analysis based on atmospheric pattern classification: An application along the Italian coast. Natural Hazards and Earth System Sciences, 20(5), 1233–1246. doi:10.5194/nhess-20-1233-2020.

Demuzere, M., Kassomenos, P., & Philipp, A. (2011). The COST733 circulation type classification software: An example for surface ozone concentrations in Central Europe. Theoretical and Applied Climatology, 105(1), 143–166. doi:10.1007/s00704-010-0378-4.

Cannon, A. J., Whitfield, P. H., & Lord, E. R. (2002). Synoptic map-pattern classification using recursive partitioning and principal component analysis. Monthly Weather Review, 130(5), 1187–1206. doi:10.1175/1520-0493(2002)130<1187: SMPCUR>2.0.CO;2.

Yarnal, B. (1993). Synoptic climatology in environmental analysis: a primer. CRC Press, Boca Raton, United States.

Huth, R., Beck, C., Philipp, A., Demuzere, M., Ustrnul, Z., Cahynová, M., Kyselý, J., & Tveito, O. E. (2008). Classifications of atmospheric circulation patterns: Recent advances and applications. Annals of the New York Academy of Sciences, 1146, 105–152. doi:10.1196/annals.1446.019.

Hartigan, J. A., & Wong, M. A. (1979). Algorithm AS 136: A K-Means Clustering Algorithm. Applied Statistics, 28(1), 100. Doi:10.2307/2346830.

Preisendorfer, R. W., & Mobley, C. D. (1988). Principal component analysis in meteorology and oceanography. Developments in atmospheric science, 17.

Corte-Real, J., Qian, B., & Xu, H. (1999). Circulation patterns, daily precipitation in Portugal and implications for climate change simulated by the second Hadley Centre GCM. Climate Dynamics, 15(12), 921–935. doi:10.1007/s003820050322.

Solman, S. A., & Menéndez, C. G. (2003). Weather regimes in the South American sector and neighboring oceans during winter. Climate Dynamics, 21(1), 91–104. doi:10.1007/s00382-003-0320-x.

Cassou, C. (2010, September). Euro-Atlantic regimes and their teleconnections. ECMWF Seminar on Predictability in the European and Atlantic regions, 6-9 September, 2010, Reading, United Kingdom.

Santos, J. A., Corte-Real, J., & Leite, S. M. (2005). Weather regimes and their connection to the winter rainfall in Portugal. International Journal of Climatology, 25(1), 33–50. doi:10.1002/joc.1101.

Stahl, K., Moore, R. D., & McKendry, I. G. (2006). The role of synoptic-scale circulation in the linkage between large-scale ocean-atmosphere indices and winter surface climate in British Columbia, Canada. International Journal of Climatology, 26(4), 541–560. doi:10.1002/joc.1268.

Philipp, A., Bartholy, J., Beck, C., Erpicum, M., Esteban, P., Fettweis, X., Huth, R., James, P., Jourdain, S., Kreienkamp, F., Krennert, T., Lykoudis, S., Michalides, S. C., Pianko-Kluczynska, K., Post, P., Álvarez, D. R., Schiemann, R., Spekat, A., & Tymvios, F. S. (2010). Cost733cat – A database of weather and circulation type classifications. Physics and Chemistry of the Earth, Parts A/B/C, 35(9–12), 360–373. doi:10.1016/j.pce.2009.12.010.

Brinkmann, W. A. R. (2000). Modification of a correlation-based circulation pattern classification to reduce within-type variability of temperature and precipitation. International Journal of Climatology, 20(8), 839–852. doi:10.1002/1097-0088(20000630)20:8<839::AID-JOC500>3.0.CO;2-X.

Lund, I. A. (1963). Map-Pattern Classification by Statistical Methods. Journal of Applied Meteorology, 2(1), 56–65. doi:10.1175/1520-0450(1963)002<0056:mpcbsm>;2.

Moss, R. H., Edmonds, J. A., Hibbard, K. A., Manning, M. R., Rose, S. K., Van Vuuren, D. P., Carter, T. R., Emori, S., Kainuma, M., Kram, T., Meehl, G. A., Mitchell, J. F. B., Nakicenovic, N., Riahi, K., Smith, S. J., Stouffer, R. J., Thomson, A. M., Weyant, J. P., & Wilbanks, T. J. (2010). The next generation of scenarios for climate change research and assessment. Nature, 463(7282), 747–756. doi:10.1038/nature08823.

Pavlova, A. V., Arkhipkin, V. S., & Myslenkov, S. A. (2020). Intraannual and interannual variability of storm surges in the North Caspian Sea. Hydrometeorological Research and Forecasting, 3(377), 42–57. doi:10.37162/2618-9631-2020-3-42-57.

Ambrosimov A. K. & Ambrosimov, S. A. (2008). Wave Characteristics for the Deep Part of the Central Caspian Sea Derived from Observations in Different Seasons of 2005 Using Wave-Tide Gages. Ekologicheskie Sistemy I Pribory, 8. (In Russian).

Sawaragi, T. (1995). Coastal engineering-waves, beaches, wave-structure interactions. Elsevier, Amsterdam, Netherlands.

AMadat-zade A. A. (1959). The main types of atmospheric processes that determine the wind field in the Caspian Sea. Tr. Oceanographic Commission of the Academy of Sciences of the USSR, 5, 140–145. (In Russian).

Koshinsky S. D. (1975). Regional characteristics of strong winds in the seas of the Soviet Union. T. 1. Caspian Sea. L. Hydrometeoizdat, 412. (In Russian).

Full Text: PDF

DOI: 10.28991/CEJ-2022-08-11-01


  • There are currently no refbacks.

Copyright (c) 2022 Anna Pavlova, Stanislav Myslenkov, Victor Arkhipkin, Galina Surkova

Creative Commons License
This work is licensed under a Creative Commons Attribution 4.0 International License.