Characteristics of Foamed Concrete Containing Ultra-fine Drift Sand of the Yangtze River
Vol. 8 No. 8 (2022): August
Research Articles
Downloads
Doi: 10.28991/CEJ-2022-08-08-013
Full Text: PDF
Al-Sairafi, F. A., Jiang, C., XinXin, W., & Aziz, H. Y. (2022). Characteristics of Foamed Concrete Containing Ultra-fine Drift Sand of the Yangtze River. Civil Engineering Journal, 8(8), 1712–1724. https://doi.org/10.28991/CEJ-2022-08-08-013
[1] Raj, A., Sathyan, D., & Mini, K. M. (2019). Physical and functional characteristics of foam concrete: A review. Construction and Building Materials, 221, 787–799. doi:10.1016/j.conbuildmat.2019.06.052.
[2] Luan, J., Chen, X., Ning, Y., & Shi, Z. (2022). Beneficial utilization of ultra-fine dredged sand from Yangtze River channel as a concrete material based on the minimum paste theory. Case Studies in Construction Materials, 16, e01098. doi:10.1016/j.cscm.2022.e01098.
[3] da Silva, R. C., Puglieri, F. N., de Genaro Chiroli, D. M., Bartmeyer, G. A., Kubaski, E. T., & Tebcherani, S. M. (2021). Recycling of glass waste into foam glass boards: A comparison of cradle-to-gate life cycles of boards with different foaming agents. Science of the Total Environment, 771, 145276. doi:10.1016/j.scitotenv.2021.145276.
[4] Jiang, C., Guo, W., Chen, H., Zhu, Y., & Jin, C. (2018). Effect of filler type and content on mechanical properties and microstructure of sand concrete made with superfine waste sand. Construction and Building Materials, 192, 442–449. doi:10.1016/j.conbuildmat.2018.10.167.
[5] Qiuyue, Z. (2021). Study on Mechanical Response of Ecological Sea wall Block of Recycled Aggregate Porous Concrete. Master Thesis, Hohai University, Nanjing, China.
[6] Li, S., Chen, X., Zhang, W., Feng, Z., & Wang, R. (2022). Mechanical properties of alkali activated slag concrete with ultra-fine dredged sand from Yangtze River. Fuhe Cailiao Xuebao/Acta Materiae Compositae Sinica, 39(1), 335–343. doi:10.13801/j.cnki.fhclxb.20210419.003. (In Chinese).
[7] Kunhanandan Nambiar, E. K., & Ramamurthy, K. (2008). Fresh State Characteristics of Foam Concrete. Journal of Materials in Civil Engineering, 20(2), 111–117. doi:10.1061/(asce)0899-1561(2008)20:2(111).
[8] Abd Elrahman, M., Sikora, P., Chung, S. Y., & Stephan, D. (2021). The performance of ultra-lightweight foamed concrete incorporating nanosilica. Archives of Civil and Mechanical Engineering, 21(2). doi:10.1007/s43452-021-00234-2.
[9] Ahmad, M. R., & Chen, B. (2019). Experimental research on the performance of lightweight concrete containing foam and expanded clay aggregate. Composites Part B: Engineering, 171, 46–60. doi:10.1016/j.compositesb.2019.04.025.
[10] Luan, J., Chen, X., Ning, Y., & Zhang, W. (2022). Mechanical characteristics and energy dissipation characteristics of dredged sand concrete during triaxial loading. Journal of Building Engineering, 55. doi:10.1016/j.jobe.2022.104700.
[11] Obla, K. H., Hill, R. L., Thomas, M. D. A., Shashiprakash, S. G., & Perebatova, O. (2003). Properties of Concrete Containing Ultra-Fine Fly Ash. ACI Materials Journal, 100(5), 426–433. doi:10.14359/12819.
[12] Tran, N. P., Nguyen, T. N., Ngo, T. D., Le, P. K., & Le, T. A. (2022). Strategic progress in foam stabilization towards high-performance foam concrete for building sustainability: A state-of-the-art review. Journal of Cleaner Production, 375, 133939. doi:10.1016/j.jclepro.2022.133939.
[13] Li, S., Chen, X., Zhang, W., Feng, Z., & Wang, R. (2022). Mechanical properties of alkali activated slag concrete with ultra-fine dredged sand from Yangtze River. Fuhe Cailiao Xuebao/Acta Materiae Compositae Sinica, 39(1), 335–343. doi:10.13801/j.cnki.fhclxb.20210419.003.
[14] Wan Ibrahim, M. H., Jamaludin, N., Irwan, J. M., Ramadhansyah, P. J., & Suraya Hani, A. (2014). Compressive and flexural strength of foamed concrete containing polyolefin fibers. Advanced Materials Research, 911, 489–493. doi:10.4028/www.scientific.net/AMR.911.489.
[15] Muthusamy, K., Budiea, A. M. A., Zaidan, A. L. F., Rasid, M. H., & Hazimmah, D. S. (2017). Properties of concrete containing foamed concrete block waste as fine aggregate replacement. IOP Conference Series: Materials Science and Engineering, 271(1), 271. doi:10.1088/1757-899X/271/1/012084.
[16] Elrahman, M. A., El Madawy, M. E., Chung, S. Y., Sikora, P., & Stephan, D. (2019). Preparation and characterization of ultra-lightweight foamed concrete incorporating lightweight aggregates. Applied Sciences (Switzerland), 9(7), 1447. doi:10.3390/app9071447.
[17] Shi, J., Liu, B., He, Z., Liu, Y., Jiang, J., Xiong, T., & Shi, J. (2021). A green ultra-lightweight chemically foamed concrete for building exterior: A feasibility study. Journal of Cleaner Production, 288, 125085. doi:10.1016/j.jclepro.2020.125085.
[18] Zhou, D., Gao, H., Liao, H., Fang, L., & Cheng, F. (2021). Enhancing the performance of foam concrete containing fly ash and steel slag via a pressure foaming process. Journal of Cleaner Production, 329, 129664. doi:10.1016/j.jclepro.2021.129664.
[19] Colangelo, F., Cioffi, R., & Farina, I. (Eds.). (2021). Handbook of sustainable concrete and industrial waste management: recycled and artificial aggregate, innovative eco-friendly binders, and life cycle assessment. Woodhead Publishing. doi:10.1016/c2019-0-04591-8.
[20] Zhang, H. (2011). Building materials in civil engineering. Woodhead Publishing, Sawston, United Kingdom.
[21] Claisse, P. A. (2015). Civil Engineering Materials (1st Ed.). Butterworth-Heinemann, Oxford, United Kingdom.
[22] Abdelgader, H. S. (1996). Effect of the quantity of sand on the compressive strength of two-stage concrete. Magazine of Concrete Research, 48(4), 353–360. doi:10.1680/macr.1996.48.177.353.
[23] Dubey, A., Chandak, R., & Yadav, P. R. K. (2012). Effect of blast furnace slag powder on compressive strength of concrete. International Journal of Scientific & Engineering Research, 3(8), 1–5.
[24] Venkateswara Rao, A., & Srinivasa Rao, K. (2019). Effect of fly ash on strength of concrete. Circular Economy and Fly Ash Management, 125–134. doi:10.1007/978-981-15-0014-5_9.
[25] Rasol, M. A. (2015). Effect of Silica Fume on Concrete Properties and Advantages for Kurdistan Region, Iraq. International Journal of Scientific & Engineering Research, 6(1), 170-173.
[26] Yu, C. C., Tung, S. H., & Weng, M. C. (2008). The failure mechanism of a concrete cube. Proceedings of the 6th International Conference on Engineering Computational Technology. doi:10.4203/ccp.89.131.
[2] Luan, J., Chen, X., Ning, Y., & Shi, Z. (2022). Beneficial utilization of ultra-fine dredged sand from Yangtze River channel as a concrete material based on the minimum paste theory. Case Studies in Construction Materials, 16, e01098. doi:10.1016/j.cscm.2022.e01098.
[3] da Silva, R. C., Puglieri, F. N., de Genaro Chiroli, D. M., Bartmeyer, G. A., Kubaski, E. T., & Tebcherani, S. M. (2021). Recycling of glass waste into foam glass boards: A comparison of cradle-to-gate life cycles of boards with different foaming agents. Science of the Total Environment, 771, 145276. doi:10.1016/j.scitotenv.2021.145276.
[4] Jiang, C., Guo, W., Chen, H., Zhu, Y., & Jin, C. (2018). Effect of filler type and content on mechanical properties and microstructure of sand concrete made with superfine waste sand. Construction and Building Materials, 192, 442–449. doi:10.1016/j.conbuildmat.2018.10.167.
[5] Qiuyue, Z. (2021). Study on Mechanical Response of Ecological Sea wall Block of Recycled Aggregate Porous Concrete. Master Thesis, Hohai University, Nanjing, China.
[6] Li, S., Chen, X., Zhang, W., Feng, Z., & Wang, R. (2022). Mechanical properties of alkali activated slag concrete with ultra-fine dredged sand from Yangtze River. Fuhe Cailiao Xuebao/Acta Materiae Compositae Sinica, 39(1), 335–343. doi:10.13801/j.cnki.fhclxb.20210419.003. (In Chinese).
[7] Kunhanandan Nambiar, E. K., & Ramamurthy, K. (2008). Fresh State Characteristics of Foam Concrete. Journal of Materials in Civil Engineering, 20(2), 111–117. doi:10.1061/(asce)0899-1561(2008)20:2(111).
[8] Abd Elrahman, M., Sikora, P., Chung, S. Y., & Stephan, D. (2021). The performance of ultra-lightweight foamed concrete incorporating nanosilica. Archives of Civil and Mechanical Engineering, 21(2). doi:10.1007/s43452-021-00234-2.
[9] Ahmad, M. R., & Chen, B. (2019). Experimental research on the performance of lightweight concrete containing foam and expanded clay aggregate. Composites Part B: Engineering, 171, 46–60. doi:10.1016/j.compositesb.2019.04.025.
[10] Luan, J., Chen, X., Ning, Y., & Zhang, W. (2022). Mechanical characteristics and energy dissipation characteristics of dredged sand concrete during triaxial loading. Journal of Building Engineering, 55. doi:10.1016/j.jobe.2022.104700.
[11] Obla, K. H., Hill, R. L., Thomas, M. D. A., Shashiprakash, S. G., & Perebatova, O. (2003). Properties of Concrete Containing Ultra-Fine Fly Ash. ACI Materials Journal, 100(5), 426–433. doi:10.14359/12819.
[12] Tran, N. P., Nguyen, T. N., Ngo, T. D., Le, P. K., & Le, T. A. (2022). Strategic progress in foam stabilization towards high-performance foam concrete for building sustainability: A state-of-the-art review. Journal of Cleaner Production, 375, 133939. doi:10.1016/j.jclepro.2022.133939.
[13] Li, S., Chen, X., Zhang, W., Feng, Z., & Wang, R. (2022). Mechanical properties of alkali activated slag concrete with ultra-fine dredged sand from Yangtze River. Fuhe Cailiao Xuebao/Acta Materiae Compositae Sinica, 39(1), 335–343. doi:10.13801/j.cnki.fhclxb.20210419.003.
[14] Wan Ibrahim, M. H., Jamaludin, N., Irwan, J. M., Ramadhansyah, P. J., & Suraya Hani, A. (2014). Compressive and flexural strength of foamed concrete containing polyolefin fibers. Advanced Materials Research, 911, 489–493. doi:10.4028/www.scientific.net/AMR.911.489.
[15] Muthusamy, K., Budiea, A. M. A., Zaidan, A. L. F., Rasid, M. H., & Hazimmah, D. S. (2017). Properties of concrete containing foamed concrete block waste as fine aggregate replacement. IOP Conference Series: Materials Science and Engineering, 271(1), 271. doi:10.1088/1757-899X/271/1/012084.
[16] Elrahman, M. A., El Madawy, M. E., Chung, S. Y., Sikora, P., & Stephan, D. (2019). Preparation and characterization of ultra-lightweight foamed concrete incorporating lightweight aggregates. Applied Sciences (Switzerland), 9(7), 1447. doi:10.3390/app9071447.
[17] Shi, J., Liu, B., He, Z., Liu, Y., Jiang, J., Xiong, T., & Shi, J. (2021). A green ultra-lightweight chemically foamed concrete for building exterior: A feasibility study. Journal of Cleaner Production, 288, 125085. doi:10.1016/j.jclepro.2020.125085.
[18] Zhou, D., Gao, H., Liao, H., Fang, L., & Cheng, F. (2021). Enhancing the performance of foam concrete containing fly ash and steel slag via a pressure foaming process. Journal of Cleaner Production, 329, 129664. doi:10.1016/j.jclepro.2021.129664.
[19] Colangelo, F., Cioffi, R., & Farina, I. (Eds.). (2021). Handbook of sustainable concrete and industrial waste management: recycled and artificial aggregate, innovative eco-friendly binders, and life cycle assessment. Woodhead Publishing. doi:10.1016/c2019-0-04591-8.
[20] Zhang, H. (2011). Building materials in civil engineering. Woodhead Publishing, Sawston, United Kingdom.
[21] Claisse, P. A. (2015). Civil Engineering Materials (1st Ed.). Butterworth-Heinemann, Oxford, United Kingdom.
[22] Abdelgader, H. S. (1996). Effect of the quantity of sand on the compressive strength of two-stage concrete. Magazine of Concrete Research, 48(4), 353–360. doi:10.1680/macr.1996.48.177.353.
[23] Dubey, A., Chandak, R., & Yadav, P. R. K. (2012). Effect of blast furnace slag powder on compressive strength of concrete. International Journal of Scientific & Engineering Research, 3(8), 1–5.
[24] Venkateswara Rao, A., & Srinivasa Rao, K. (2019). Effect of fly ash on strength of concrete. Circular Economy and Fly Ash Management, 125–134. doi:10.1007/978-981-15-0014-5_9.
[25] Rasol, M. A. (2015). Effect of Silica Fume on Concrete Properties and Advantages for Kurdistan Region, Iraq. International Journal of Scientific & Engineering Research, 6(1), 170-173.
[26] Yu, C. C., Tung, S. H., & Weng, M. C. (2008). The failure mechanism of a concrete cube. Proceedings of the 6th International Conference on Engineering Computational Technology. doi:10.4203/ccp.89.131.
- authors retain all copyrights - authors will not be forced to sign any copyright transfer agreements
- permission of re-useThis work (including HTML and PDF Files) is licensed under a Creative Commons Attribution 4.0 International License.
