Investigation of Honeycomb Sandwich Panel Structure using Aluminum Alloy (AL6XN) Material under Blast Loading

Dany Taufiq Alim Ansori, Aditya Rio Prabowo, Teguh Muttaqie, Nurul Muhayat, Fajar Budi Laksono, D. D. Dwi Pria Tjahjana, Ari Prasetyo, Yemi Kuswardi


In this study, we focused on the large inelastic behavior of a sandwich panel made of two solid plates as a stiffener and a honeycomb core shell subjected to blast load. The loading scheme was carried out using an explosive charge bullet mounted at a standoff distance of 100 mm with three mass variations of trinitrotoluene: 1, 2, and 3 kg TNT. The numerical simulations performed using ABAQUS/CAE were validated with the experimental results of a previous study. The geometrical effects of the sandwich panel on intact and damaged models were also numerically investigated. The panel was designed using a square and hexagonal honeycomb core. The effect of honeycomb core height was also observed by modeling the core using three height variations: 31, 51, and 71 mm. The results showed that the hexagonal core was more resistant to blast loads than the square design. The core height parameter determines the energy absorption based on these results. The structural strength is also affected by the damage. The findings of this study can be used to improve structural designs that utilize sandwich panels to withstand blast loads.


Doi: 10.28991/CEJ-2022-08-05-014

Full Text: PDF


Blast Loads; Deformation; Honeycomb; Trinitrotoluene; ABAQUS/CAE.


Liang, C. C., & Tai, Y. S. (2006). Shock responses of a surface ship subjected to noncontact underwater explosions. Ocean Engineering, 33(5–6), 748–772. doi:10.1016/j.oceaneng.2005.03.011.

Soleimani, S. M., Ghareeb, N. H., & Shaker, N. H. (2018). Modeling, Simulation and Optimization of Steel Sandwich Panels under Blast Loading. American Journal of Engineering and Applied Sciences, 11(3), 1130–1140. doi:10.3844/ajeassp.2018.1130.1140.

Kumar, R., & Patel, S. (2019). Failure analysis on octagonal honeycomb sandwich panel under air blast loading. Materials Today: Proceedings, 46, 9667–9672. doi:10.1016/j.matpr.2020.07.525.

Dharmasena, K. P., Wadley, H. N. G., Xue, Z., & Hutchinson, J. W. (2008). Mechanical response of metallic honeycomb sandwich panel structures to high-intensity dynamic loading. International Journal of Impact Engineering, 35(9), 1063–1074. doi:10.1016/j.ijimpeng.2007.06.008.

Xue, Z., & Hutchinson, J. W. (2006). Crush dynamics of square honeycomb sandwich cores. International Journal for Numerical Methods in Engineering, 65(13), 2221–2245. doi:10.1002/nme.1535.

Yu, S., Yu, X., Ao, Y., Mei, J., Jiang, W., Liu, J., Li, C., & Huang, W. (2021). The impact resistance of composite Y-shaped cores sandwich structure. Thin-Walled Structures, 169, 108389. doi:10.1016/j.tws.2021.108389.

Ma, J., Dai, H., Chai, S., & Chen, Y. (2021). Energy absorption of sandwich structures with a kirigami-inspired pyramid foldcore under quasi-static compression and shear. Materials and Design, 206, 109808. doi:10.1016/j.matdes.2021.109808.

Liu, K., Zong, S., Li, Y., Wang, Z., Hu, Z., & Wang, Z. (2022). Structural response of the U-type corrugated core sandwich panel used in ship structures under the lateral quasi-static compression load. Marine Structures, 84, 103198. doi:10.1016/j.marstruc.2022.103198.

Zhu, F., & Lu, G. (2007). A review of blast and impact of metallic and sandwich structures. Electronic Journal of Structural Engineering, (1), 92-101.

Cerik, B. C. (2017). Damage assessment of marine grade aluminium alloy-plated structures due to air blast and explosive loads. Thin-Walled Structures, 110, 123–132. doi:10.1016/j.tws.2016.10.021.

Li, Y., Ren, X., Zhang, X., Chen, Y., Zhao, T., & Fang, D. (2021). Deformation and failure modes of aluminum foam-cored sandwich plates under air-blast loading. Composite Structures, 258, 113317. doi:10.1016/j.compstruct.2020.113317.

Deqiang, S., Weihong, Z., & Yanbin, W. (2010). Mean out-of-plane dynamic plateau stresses of hexagonal honeycomb cores under impact loadings. Composite Structures, 92(11), 2609–2621. doi:10.1016/j.compstruct.2010.03.016.

Nayak, S. K., Singh, A. K., Belegundu, A. D., & Yen, C. F. (2013). Process for design optimization of honeycomb core sandwich panels for blast load mitigation. Structural and Multidisciplinary Optimization, 47(5), 749–763. doi:10.1007/s00158-012-0845-x.

Lee, J., Lacy, T. E., & Pittman, C. U. (2021). Lightning mechanical damage prediction in carbon/epoxy laminates using equivalent air blast overpressure. Composites Part B: Engineering, 212, 108649. doi:10.1016/j.compositesb.2021.108649.

Karlos, V., & Solomos, G. (2013). Calculation of blast loads for application to structural components. JRC Technical reports, European Laboratory for Structural Assessment. Publications Office of the European Union, Luxemborg city, Luxemborg. doi:10.2788/61866.

Fleck, N. A., & Deshpande, V. S. (2004). The resistance of clamped sandwich beams to shock loading. Journal of Applied Mechanics, Transactions ASME, 71(3), 386–401. doi:10.1115/1.1629109.

Takeda, N., Minakuchi, S., & Okabe, Y. (2007). Smart Composite Sandwich Structures for Future Aerospace Application -Damage Detection and Suppression-: a Review. Journal of Solid Mechanics and Materials Engineering, 1(1), 3–17. doi:10.1299/jmmp.1.3.

Sahoo, D. K., Guha, A., Tewari, A., & Singh, R. K. (2017). Performance of Monolithic Plate and Layered Plates under Blast Load. Procedia Engineering, 173, 1909–1917. doi:10.1016/j.proeng.2016.12.251.

Liu, K., Zong, S., Li, Y., Wang, Z., Hu, Z., & Wang, Z. (2022). Structural response of the U-type corrugated core sandwich panel used in ship structures under the lateral quasi-static compression load. Marine Structures, 84, 103198. doi:10.1016/j.marstruc.2022.103198.

Markose, A., & Rao, C. L. (2017). Mechanical response of V shaped plates under blast loading. Thin-Walled Structures, 115, 12–20. doi:10.1016/j.tws.2017.02.002.

Wowk, D., Reyno, T., Yeung, R., & Marsden, C. (2020). An experimental and numerical investigation of core damage size in honeycomb sandwich panels subject to low-velocity impact. Composite Structures, 254, 112739. doi:10.1016/j.compstruct.2020.112739.

Zhao, C., He, K., Zhi, L., Lu, X., Pan, R., Gautam, A., Wang, J., & Li, X. (2021). Blast behavior of steel-concrete-steel sandwich panel: Experiment and numerical simulation. Engineering Structures, 246, 112998. doi:10.1016/j.engstruct.2021.112998.

Jing, L., Liu, K., Su, X., & Guo, X. (2021). Experimental and numerical study of square sandwich panels with layered-gradient foam cores to air-blast loading. Thin-Walled Structures, 161, 107445. doi:10.1016/j.tws.2021.107445.

Mary Varghese, R., & Mary Varghese, K. (2022). Comparative study on the blast load response of woven and lattice core metallic sandwich panels. Materials Today: Proceedings. doi:10.1016/j.matpr.2022.04.257.

Zhang, C., Tan, P. J., & Yuan, Y. (2022). Confined blast loading of steel plates with and without pre-formed holes. International Journal of Impact Engineering, 163, 104183. doi:10.1016/j.ijimpeng.2022.104183.

Shrot, A., & Bäker, M. (2012). Determination of Johnson-Cook parameters from machining simulations. Computational Materials Science, 52(1), 298–304. doi:10.1016/j.commatsci.2011.07.035.

Nemat-Nasser, S., Guo, W. G., & Kihl, D. P. (2001). Thermomechanical response of AL6XN stainless steel over a wide range of strain rates and temperatures. Journal of the Mechanics and Physics of Solids, 49(8), 1823–1846. doi:10.1016/S0022-5096(00)00069-7.

Abed, F. H., & Voyiadjis, G. Z. (2005). Plastic deformation modeling of AL-6XN stainless steel at low and high strain rates and temperatures using a combination of bcc and fcc mechanisms of metals. International Journal of Plasticity, 21(8), 1618–1639. doi:10.1016/j.ijplas.2004.11.003.

Prabowo, A. R., Tuswan, T., Nurcholis, A., & Pratama, A. A. (2021). Structural Resistance of Simplified Side Hull Models Accounting for Stiffener Design and Loading Type. Mathematical Problems in Engineering, 2021, 1–19. doi:10.1155/2021/6229498.

Akbar, M. S., Prabowo, A. R., Tjahjana, D. D. D. P., & Tuswan, T. (2021). Analysis of plated-hull structure strength against hydrostatic and hydrodynamic loads: A case study of 600 TEU container ships. Journal of the Mechanical Behavior of Materials, 30(1), 237–248. doi:10.1515/jmbm-2021-0025.

Fajri, A., Prabowo, A. R., & Muhayat, N. (2022). Assessment of ship structure under fatigue loading: FE benchmarking and extended performance analysis. Curved and Layered Structures, 9(1), 163–186. doi:10.1515/cls-2022-0014.

Prabowo, A. R., Baek, S. J., Cho, H. J., Byeon, J. H., Bae, D. M., & Sohn, J. M. (2017). The effectiveness of thin-walled hull structures against collision impact. Latin American Journal of Solids and Structures, 14(7), 1345–1360. doi:10.1590/1679-78253895.

Prabowo, A. R., Cao, B., Sohn, J. M., & Bae, D. M. (2020). Crashworthiness assessment of thin-walled double bottom tanker: Influences of seabed to structural damage and damage-energy formulae for grounding damage calculations. Journal of Ocean Engineering and Science, 5(4), 387–400. doi:10.1016/j.joes.2020.03.002.

Prabowo, A. R., Ridwan, R., & Muttaqie, T. (2022). On the Resistance to Buckling Loads of Idealized Hull Structures: FE Analysis on Designed-Stiffened Plates. Designs, 6(3), 46. doi:10.3390/designs6030046.

Gagnon, R. E., & Wang, J. (2012). Numerical simulations of a tanker collision with a bergy bit incorporating hydrodynamics, a validated ice model and damage to the vessel. Cold Regions Science and Technology, 81, 26–35. doi:10.1016/j.coldregions.2012.04.006.

Alabdullah, M., Polishetty, A., Nomani, J., & Littelfair, G. (2016). Experimental and finite element analysis of machinability of AL6XN super austenitic stainless steel. The International Journal of Advanced Manufacturing Technology, 91(1-4), 501–516. doi:10.1007/s00170-016-9766-y.

Full Text: PDF

DOI: 10.28991/CEJ-2022-08-05-014


  • There are currently no refbacks.

Copyright (c) 2022 Dany Taufiq Alim Ansori, Aditya Rio Prabowo, Teguh Muttaqie, Nurul Muhayat, Fajar Budi Laksono, D. D. Dwi Pria Tjahjana, Ari Prasetyo, Yemi Kuswardi

Creative Commons License
This work is licensed under a Creative Commons Attribution 4.0 International License.