Utilization of Bitumen Modified with Pet Bottles as an Alternative Binder for the Production of Paving Blocks

Temitope Awolusi, Daniel Oguntayo, Ahmed Farouk Deifalla, Emmanuel Babalola, Fejiro Natie, Oluwasegun Aladegboye, Marc Azab


This study considers the utilization of bitumen modified with molten polyethylene terephthalate (PET) waste bottles as an alternative binder in paving blocks. PET waste was used at 2, 4, 6, 8, and 10% to modify bitumen in the production of paving blocks. Compressive strength test and skid resistance test were conducted on the paving block samples to evaluate their mechanical strength properties, while water absorption and the Cantabro abrasion tests were carried out to ascertain the durability of the paving block samples. The PET-modified bitumen paving blocks (PMBPB) have enhanced compressive strength and skid resistance compared to unmodified bitumen paving blocks. Also, a significant reduction in water absorption rate of up to 56% was achieved in PET-modified bitumen paving blocks (PMBPB) compared to the unmodified sample. The abrasion loss in the PMBCB samples was the least compared to that in normal cement paving blocks and unmodified bitumen paving blocks. The maximum compressive strength and least water absorption for the PET-modified bitumen concrete paving blocks were obtained at a 10% PET replacement level. It can be concluded that enhanced compressive strength and durability in cement paving blocks and unmodified bitumen paving blocks could be achieved with the use of PET modified bitumen in concrete paving block production, and this will also encourage PET waste recycling and contribute meaningfully to sustainability in concrete paving block production.


Doi: 10.28991/CEJ-2023-09-01-08

Full Text: PDF


PET-Modified Bitumen; Paving Blocks; Skid Resistance; Compressive Strength; Abrasion Loss.


Brouwer, M. T., Alvarado Chacon, F., & Thoden van Velzen, E. U. (2020). Effect of recycled content and PET quality on the properties of PET bottles, part III: Modelling of repetitive recycling. Packaging Technology and Science, 33(9), 373–383. doi:10.1002/pts.2489.

Zhang, R., Ma, X., Shen, X., Zhai, Y., Zhang, T., Ji, C., & Hong, J. (2020). PET bottles recycling in China: An LCA coupled with LCC case study of blanket production made of waste PET bottles. Journal of Environmental Management, 260. doi:10.1016/j.jenvman.2019.110062.

Taaffe, J., O’Sullivan, S., Rahman, M. E., & Pakrashi, V. (2014). Experimental characterisation of Polyethylene Terephthalate (PET) bottle Eco-bricks. Materials and Design, 60, 50–56. doi:10.1016/j.matdes.2014.03.045.

Papong, S., Malakul, P., Trungkavashirakun, R., Wenunun, P., Chom-In, T., Nithitanakul, M., & Sarobol, E. (2014). Comparative assessment of the environmental profile of PLA and PET drinking water bottles from a life cycle perspective. Journal of Cleaner Production, 65, 539–550. doi:10.1016/j.jclepro.2013.09.030.

Leng, Z., Padhan, R. K., & Sreeram, A. (2018). Production of a sustainable paving material through chemical recycling of waste PET into crumb rubber modified asphalt. Journal of Cleaner Production, 180, 682–688. doi:10.1016/j.jclepro.2018.01.171.

Zhu, J., Birgisson, B., & Kringos, N. (2014). Polymer modification of bitumen: Advances and challenges. European Polymer Journal, 54(1), 18–38. doi:10.1016/j.eurpolymj.2014.02.005.

Muritala, K. B., & Adewole, J. K. (2017). Development of Nigeria's Bitumen for National Economic Growth: Opportunities for Membrane Separation Technology. Journal of the Nigerian Society of Chemical Engineers, 32(2), 96-96.

Boom, Y. J., Enfrin, M., Grist, S., & Giustozzi, F. (2022). Recycled plastic modified bitumen: Evaluation of VOCs and PAHs from laboratory generated fumes. Science of The Total Environment, 832, 155037. doi:10.1016/j.scitotenv.2022.155037.

Wang, T., Wang, J., Hou, X., & Xiao, F. (2021). Effects of SARA fractions on low temperature properties of asphalt binders. Road Materials and Pavement Design, 22(3), 539–556. doi:10.1080/14680629.2019.1628803.

D'Melo, D., & Taylor, R. (2015). Constitution and structure of bitumens. The Shell bitumen handbook. ICE Publishing, London, United Kingdom.

Remišová, E., & Holý, M. (2017). Changes of Properties of Bitumen Binders by Additives Application. IOP Conference Series: Materials Science and Engineering, 245, 032003. doi:10.1088/1757-899x/245/3/032003.

Lewandowski, L. H. (1994). Polymer modification of paving asphalt binders. Rubber Chemistry and Technology, 67(3), 447–480. doi:10.5254/1.3538685.

Porto, M., Caputo, P., Loise, V., Eskandarsefat, S., Teltayev, B., & Rossi, C. O. (2019). Bitumen and bitumen modification: A review on latest advances. Applied Sciences (Switzerland), 9(4). doi:10.3390/app9040742.

SMITHERS. (2022). The Future of PET packaging to 2025. Available online: https://www.smithers.com/en-gb/services/market-reports/packaging/the-future-of-pet-packaging-to-2025 (accessed on August 2022).

Tsironi, T. N., Chatzidakis, S. M., & Stoforos, N. G. (2022). The future of polyethylene terephthalate bottles: Challenges and sustainability. Packaging Technology and Science, 35(4), 317–325. doi:10.1002/pts.2632.

Ben Zair, M. M., Jakarni, F. M., Muniandy, R., Hassim, S., & Ansari, A. H. (2022). A Brief Review: Application of Recycled Polyethylene Terephthalate as a Modifier for Asphalt Binder. Lecture Notes in Civil Engineering, 193, 739–756. doi:10.1007/978-3-030-87379-0_56.

Margolis, J. M. (2020). Engineering thermoplastics: properties and applications. CRC Press, London, United Kingdom. doi:10.1201/9781003066156.

Atta, A. M., Al-Lohedan, H. A., Ezzat, A. O., & Sabeela, N. I. (2020). New imidazolium ionic liquids from recycled polyethylene terephthalate waste for curing epoxy resins as organic coatings of steel. Coatings, 10(11), 1–17. doi:10.3390/coatings10111139.

Gopinath, P., & Naveen Kumar, C. (2021). Performance evaluation of HMAC mixes produced with gilsonite modified bitumen for heavily trafficked roads. Materials Today: Proceedings, 43, 941–946. doi:10.1016/j.matpr.2020.07.224.

Ogundipe, O. M. (2019). The Use of Polyethylene Terephthalate Waste for Modifying Asphalt Concrete Using the Marshall Test. Slovak Journal of Civil Engineering, 27(2), 9–15. doi:10.2478/sjce-2019-0010.

ASTM C39/C39M-20. (2021). Standard Test Method for Compressive Strength of Cylindrical Concrete Specimens. ASTM International, Pennsylvania, United States. doi:10.1520/C0039_C0039M-20.

Vila, P., Pereyra, M. N., & Gutiérrez, Á. (2017). Resistencia a la compresión de adoquines de hormigón. Resultados tendientes a validar el ensayo en medio adoquín. Revista ALCONPAT, 7(3), 247–261. doi:10.21041/ra.v7i3.186.

BS 1881-122. (1998). Testing Concrete-Part 122: Method for Determination of Water Absorption. British Standard Institute, London, United Kingdom.

BS 812: Part 114. (1989). Testing Aggregate: Method for Determination of Polished-Stone Value. British Standard Institute, London, United Kingdom.

Hafeez, I., Kamal, M. A., Riaz, K., & Khan, M. I. (2015). A Laboratory Experimentation Based Ranking of Margalla Crush Aggregates. University of Engineering and Technology Taxila. Technical Journal, 20(3), 62.

Corley-Lay, J. B. (1998). Friction and surface texture characterization of 14 pavement test sections in Greenville, North Carolina. Transportation Research Record, 1639(1639), 155–161. doi:10.3141/1639-17.

ASTM C1747/C1747M-13. (2022). Standard Test Method for Determining Potential Resistance to Degradation of Pervious Concrete by Impact and Abrasion. ASTM International, Pennsylvania, United States.

Saboo, N., Nirmal Prasad, A., Sukhija, M., Chaudhary, M., & Chandrappa, A. K. (2020). Effect of the use of recycled asphalt pavement (RAP) aggregates on the performance of pervious paver blocks (PPB). Construction and Building Materials, 262, 120581. doi:10.1016/j.conbuildmat.2020.120581.

Awodiji, C. T., Sule, S., & Oguguo, C. (2022). Comparative study on the strength properties of paving blocks produced from municipal plastic waste. Nigerian Journal of Technology, 40(5), 762–770. doi:10.4314/njt.v40i5.1.

Agyeman, S., Obeng-Ahenkora, N. K., Assiamah, S., & Twumasi, G. (2019). Exploiting recycled plastic waste as an alternative binder for paving blocks production. Case Studies in Construction Materials, 11, 246. doi:10.1016/j.cscm.2019.e00246.

Udawattha, C., Galabada, H., & Halwatura, R. (2017). Mud concrete paving block for pedestrian pavements. Case Studies in Construction Materials, 7, 249–262. doi:10.1016/j.cscm.2017.08.005.

Jasmee, S., Omar, G., Masripan, N. A. B., Kamarolzaman, A. A., Ashikin, A. S., & Che Ani, F. (2018). Hydrophobicity performance of polyethylene terephthalate (PET) and thermoplastic polyurethane (TPU) with thermal effect. Materials Research Express, 5(9), 96304. doi:10.1088/2053-1591/aad81e.

RD/GN/009. (1989). Guidance Notes on Road Testing. Research & Development Division, Highway Departments, University of Hong Kong, Pok Fu Lam, Hong Kong.

Hosking, R. (1992). Road Aggregates and Skidding. TRL State of the Art Review No 4. Transport Research Laboratory. Her Majesty’s Stationary Office, London, United Kingdom.

Rao, S. K., Sravana, P., & Rao, T. C. (2016). Abrasion resistance and mechanical properties of Roller Compacted Concrete with GGBS. Construction and Building Materials, 114, 925–933. doi:10.1016/j.conbuildmat.2016.04.004.

Full Text: PDF

DOI: 10.28991/CEJ-2023-09-01-08


  • There are currently no refbacks.

Copyright (c) 2023 Daniel Oguntayo, Temitope Awolusi, Solomon Ajamu, Emmanuel Babalola, Fejiro Natie, Oluwasegun Aladegboye, Yusuf Babatunde

Creative Commons License
This work is licensed under a Creative Commons Attribution 4.0 International License.