Effects of HDPE Utilization and Addition of Wetfix-Be to Asphalt Pavement in Tropical Climates

Daud Nawir, Achmad Zultan Mansur

Abstract


Plastic Waste (PW) is one of the primary sources of pollution, leading to drainage system blockages, thereby causing floods and road pavement damage. One of the major ways to reduce pollution due to plastic waste and excessive exploitation of natural resources is through the development of HDPE. It is also important to reduce damage to road pavement structures by improving the quality of the asphalt used during construction. Therefore, this research aims to analyze the effects of using HDPE shale, an ecologically friendly material, and the addition of Wetfix-Be to asphalt pavements in tropical climates. The study results showed that 5.75% of the OAC asphalt using plastic waste raises the stability value and meets the specification requirements. Specimens of AC-WC concrete asphalt mixture were also tested by immersing them in fresh and seawater for 0.5, 24, 72, and 96 hours. In conclusion, using HDPE plastic waste and Wetfix-Be keeps the AC-WC concrete asphalt mixture stable.

 

Doi: 10.28991/CEJ-2022-08-08-010

Full Text: PDF


Keywords


HDPE; Wetfix-Be; Soaked; AC-WC; Pavement.

References


Handayani, W., Chigbu, U. E., Rudiarto, I., & Surya Putri, I. H. (2020). Urbanization and increasing flood risk in the Northern Coast of Central Java-Indonesia: An assessment towards better land use policy and flood management. Land, 9(10), 343. doi:10.3390/LAND9100343.

Dwirahmadi, F., Rutherford, S., Phung, D., & Chu, C. (2019). Understanding the operational concept of a flood-resilient urban community in Jakarta, Indonesia, from the perspectives of disaster risk reduction, climate change adaptation and development agencies. International Journal of Environmental Research and Public Health, 16(20), 3993. doi:10.3390/ijerph16203993.

Dalhat, M. A., Al-Abdul Wahhab, H. I., & Al-Adham, K. (2019). Recycled Plastic Waste Asphalt Concrete via Mineral Aggregate Substitution and Binder Modification. Journal of Materials in Civil Engineering, 31(8), 4019134. doi:10.1061/(asce)mt.1943-5533.0002744.

Khan, M. Z. H., Koting, S., Katman, H. Y. B., Ibrahim, M. R., Babalghaith, A. M., & Asqool, O. (2021). Performance of high content reclaimed asphalt pavement (RAP) in asphaltic mix with crumb rubber modifier and waste engine oil as rejuvenator. Applied Sciences (Switzerland), 11(11). doi:10.3390/app11115226.

Jimenez-Relinque, E., Grande, M., Rubiano, F., & Castellote, M. (2021). Durability and safety performance of pavements with added photocatalysts. Applied Sciences (Switzerland), 11(23). doi:10.3390/app112311277.

Badejo, A. A., Adekunle, A. A., Adekoya, O. O., Ndambuki, J. M., Kupolati, K. W., Bada, B. S., & Omole, D. O. (2017). Plastic waste as strength modifiers in asphalt for a sustainable environment. African Journal of Science, Technology, Innovation and Development, 9(2), 173–177. doi:10.1080/20421338.2017.1302681.

Muis, Z. A., Batubara, M., Lubis, A. S., & Manurung, R. (2019). Measurement of anti-stripping agent content in asphalt mixture with Colorimetric test. International Journal of GEOMATE, 17(63), 378–385. doi:10.21660/2019.63.94587.

Khairini, N. (2020). Asphalt Concrete Mix Performance-Wearing Course (AC-WC) using Concrete Waste as Course Aggregate with the Addition of Wetfix-Be. International Seminar of Science and Applied Technology (ISSAT 2020), 259-264. doi:10.2991/aer.k.201221.044.

Fathollahi, A., Makoundou, C., Coupe, S. J., & Sangiorgi, C. (2022). Leaching of PAHs from rubber modified asphalt pavements. Science of the Total Environment, 826, 153983. doi:10.1016/j.scitotenv.2022.153983.

Lapian, F. E. P., Ramli, M. I., Pasra, M., & Arsyad, A. (2021). The performance modeling of modified asbuton and polyethylene terephthalate (PET) mixture using response surface methodology (RSM). Applied Sciences (Switzerland), 11(13). doi:10.3390/app11136144.

Nawir, D., & Mansur, A. Z. (2021). The impact of HDPE plastic seeds on the performance of asphalt mixtures. Civil Engineering Journal (Iran), 7(9), 1569–1581. doi:10.28991/cej-2021-03091744.

Ki, D., Kang, S. Y., Ma, G., & Oh, H. J. (2021). Application of Waste Plastic Films in Road Infrastructure and Construction. Frontiers in Sustainability, 2, 79. doi:10.3389/frsus.2021.756723.

Owaid, K. A., Hamdoon, A. A., Maty, R. R., Saleh, M. Y., & Abdelzaher, M. A. (2022). Waste Polymer and Lubricating Oil Used as Asphalt Rheological Modifiers. Materials, 15(11), 3744. doi:10.3390/ma15113744.

Nawir, D. (2020). Resistance Test of Porous Asphalt Using Liquid Ashburton and Beach Sand against Immersion Time and Temperature. Solid State Technology, 63(5), 5043-5056.

Costa, L. M. B., Peralta, J., Oliveira, J. R. M., & Silva, H. M. R. D. (2017). A new life for cross-linked plastic waste as aggregates and binder modifier for asphalt mixtures. Applied Sciences (Switzerland), 7(6), 1–16. doi:10.3390/app7060603.

Hasan, M. R. M., You, Z., Satar, M. K. I. M., Warid, M. N. M., Kamaruddin, N. H. M., Ge, D., & Zhang, R. (2018). Effects of titanate coupling agent on engineering properties of asphalt binders and mixtures incorporating LLDPE-CaCO3 pellet. Applied Sciences (Switzerland), 8(7). doi:10.3390/app8071029.

Suksiripattanapong, C., Uraikhot, K., Tiyasangthong, S., Wonglakorn, N., Tabyang, W., Jomnonkwao, S., & Phetchuay, C. (2022). Performance of Asphalt Concrete Pavement Reinforced with High-Density Polyethylene Plastic Waste. Infrastructures, 7(5), 1–11. doi:10.3390/infrastructures7050072.

Peng, C., Guo, C., You, Z., Xu, F., Ma, W., You, L., Li, T., Zhou, L., Huang, S., Ma, H., & Lu, L. (2020). The effect of waste engine oil and waste polyethylene on UV aging resistance of asphalt. Polymers, 12(3), 1–18. doi:10.3390/polym12030602.

General Specifications of Indonesia 2018 Indonesia Requirement. (2018). Director General of Bina Marga. Public Work Ministry of Indonesia, Jakarta, Indonesia.

Nawir, D., & Mansur, A. Z. (2021). The Effects Of The Combination Of Buton Rock Asphalt And Plastic Waste Flakes Using Liquid Asbuton In Asphalt Concrete Mixture. Journal of Engineering and Applied Science, 16(1), 34–41. doi:10.36478/jeasci.2021.34.41.

Remišová, E. (2018). Improvement in properties of bitumen using selected additives. Road and Rail Infrastructure V, 5(17-19 May), 383–388. doi:10.5592/co/cetra.2018.737.

Turku, I., Keskisaari, A., Kärki, T., Puurtinen, A., & Marttila, P. (2017). Characterization of wood plastic composites manufactured from recycled plastic blends. Composite Structures, 161, 469–476. doi:10.1016/j.compstruct.2016.11.073.

Camacho, W., & Karlsson, S. (2000). Quality-determination of recycled plastic packaging waste by identification of contaminants by GC-MS after microwave assisted extraction (MAE). Polymer Degradation and Stability, 71(1), 123–134. doi:10.1016/S0141-3910(00)00163-4.

Remišová, E., & Holý, M. (2017). Changes of Properties of Bitumen Binders by Additives Application. IOP Conference Series: Materials Science and Engineering. doi:10.1088/1757-899X/245/3/032003.

Harnaeni, S. R., Pramesti, F. P., Budiarto, A., Setyawan, A., Khan, M. I., & Sutanto, M. H. (2020). Study on structural performance of asphalt concrete and hot rolled sheet through viscoelastic characterization. Materials, 13(5), 1133. doi:10.3390/ma13051133.

Khater, A., Luo, D., Abdelsalam, M., Ma, J., & Ghazy, M. (2021). Comparative life cycle assessment of asphalt mixtures using composite admixtures of lignin and glass fibers. Materials, 14(21), 6589. doi:10.3390/ma14216589.

Wu, H., Yu, J., Song, W., Zou, J., Song, Q., & Zhou, L. (2020). A critical state-of-the-art review of durability and functionality of open-graded friction course mixtures. Construction and Building Materials, 237, 117759. doi:10.1016/j.conbuildmat.2019.117759.

Mahardi, P., Risdianto, Y., Wibisono, E., & Karismanan. (2020). Effect of HDPE Based Wastes on the Performance of AC-WC Mixture with RAP as coarse aggregate substitute. Journal of Physics: Conference Series, 1569(4), 42019. doi:10.1088/1742-6596/1569/4/042019.

Cui, S., Blackman, B. R. K., Kinloch, A. J., & Taylor, A. C. (2014). Durability of asphalt mixtures: Effect of aggregate type and adhesion promoters. International Journal of Adhesion and Adhesives, 54, 100–111. doi:10.1016/j.ijadhadh.2014.05.009.

Esmaeili, N., Hamedi, G. H., & Khodadadi, M. (2019). Determination of the stripping process of asphalt mixtures and the effective mix design and SFE parameters on its different phases. Construction and Building Materials, 213, 167–181. doi:10.1016/j.conbuildmat.2019.04.043.

Wilson, L. J., Cockburn, E., Paice, K., Sinclair, S., Faki, T., Hills, F. A., Gondek, M. B., Wood, A., & Dimitriou, L. (2018). Recovery following a marathon: a comparison of cold water immersion, whole body cryotherapy and a placebo control. European Journal of Applied Physiology, 118(1), 153–163. doi:10.1007/s00421-017-3757-z.


Full Text: PDF

DOI: 10.28991/CEJ-2022-08-08-010

Refbacks

  • There are currently no refbacks.




Copyright (c) 2022 Daud - Nawir, Achmad Zultan Mansur

Creative Commons License
This work is licensed under a Creative Commons Attribution 4.0 International License.
x
Message