Asphalt Elasticity Modulus Comparison Using Modified Laboratory LWD Against UMMATA Method

Lucky Caroles

Abstract


Highway consultants need pavement structure strength to examine and design. With advances in computer, sensor, and microelectronic technologies, the light weight deflectometer (LWD) can measure granular and asphalt layers. This portable, easy-to-use tool is suggested. This article was designed to improve LWD Pusjatan's accuracy and distinguish it from other testing methods. This study compares the LWD Pusjatan and UMMATA (Universal Material Testing Apparatus) methods for measuring modulus of elasticity on different materials. Boussinesq elastic theory is used to compute the modulus of most LWDs. In a semi-elastic environment, modulus is the connection between pressure and displacement in a rigid or flexible basis. The deflection value is derived from the process of vibrations caused by a load delivered from a given height onto a test item, with the wave/vibration collected by an acceleration measuring instrument, such as a geophone or accelerometer. The modulus of elasticity provided by the AUDL (Laboratory Deflection Test Equipment) method is less than that produced by the UMMATA method. According to the test results, the average value of AC Base material is 7.52% less than that of AC Base. The average value of AC BC material is just over 0.3%. These results indicate that more testing is necessary when using the AUDL methodology to detect correlations that might serve as a basis for comparison. Thus, the AUDL test method may be used as a nondestructive testing technique. This kind of non-destructive technique should be used frequently so that simulations of field circumstances are more accurate.

 

Doi: 10.28991/CEJ-2022-08-06-012

Full Text: PDF


Keywords


Asphalt; Elasticity Modulus; Light Weight Deflectometer (LWD); UMMATA.

References


Baskaran, V., Subash Raj, C., Subbu Sankar, R. ., & Blessy, K. (2022). The influence of CBR value on the cost of optimal flexible pavement design. Sustainability, Agri, Food and Environmental Research, 12(1). doi:10.7770/safer-V12N1-art2780.

Caroles, L., Djamaluddin, A. R., Amiruddin, A. A., & Arsyad, A. (2020). Correlation of modulus elasticity of Falling Weight Deflectometer (FWD) towards Light Weight Deflectometer (LWD) laboratory. IOP Conference Series: Earth and Environmental Science, 419(1), 410–419,. doi:10.1088/1755-1315/419/1/012039.

Siegfried, & Mulyawati, F. (2020). Comparative study of the use of FWD and LWD for flexible pavement evaluation. Journal of Physics: Conference Series, 1517(1). doi:10.1088/1742-6596/1517/1/012031.

Asim, M., Ahmad, M., Alam, M., Ullah, S., Iqbal, M. J., & Ali, S. (2021). Prediction of Rutting in Flexible Pavements using Finite Element Method. Civil Engineering Journal, 7(8), 1310-1326. doi:10.28991/cej-2021-03091727.

Encinares, E. S., Krizzia, J., & Encela, D. (2022). Prediction of California Bearing Ratio (CBR) using Dynamic Cone Penetrometer (DCP) for Soils from Second District in the Province of Sorsogon. United International Journal for Research & Technology, 3(5), 12-16.

Syafier, S. (2019). Penggunaan Light Weight Deflectometer Pusjatan Untuk Quality Control Pekerjaan Pemadatan Tanah Dasar. Jurnal Tiarsie, 15(2). doi:10.32816/tiarsie.v15i2.35. (In Indonesian).

Spreadbury, C. J., Clavier, K. A., Lin, A. M., & Townsend, T. G. (2021). A critical analysis of leaching and environmental risk assessment for reclaimed asphalt pavement management. Science of the Total Environment, 775, 145741. doi:10.1016/j.scitotenv.2021.145741.

Prayuda, H., Djaha, S. I. K., Rahmawati, A., Monika, F., & Adly, E. (2021). Young’S Modulus and Deflection Assessment on Pavement Using a Lightweight Deflectometer. International Journal of GEOMATE, 20(77), 10–17. doi:10.21660/2020.77.06188.

Schwartz, C. W., Afsharikia, Z., & Khosravifar, S. (2017). Standardizing lightweight deflectometer modulus measurements for compaction quality assurance (No. MD-17-SHA-UM-3-20). Technical Report, Department of Civil and Environmental Engineering, University of Maryland, College Park, United States.

Choi, Y., Ahn, D., Lee, Y., & Ahn, J. (2020). Compaction quality monitoring of open-graded aggregates by light weight deflectometer and soil stiffness gauge. Sustainability (Switzerland), 12(6). doi:10.3390/su12062521.

Duddu, S. R., & Chennarapu, H. (2022). Quality control of compaction with lightweight deflectometer (LWD) device: a state-of-art. International Journal of Geo-Engineering, 13(1). doi:10.1186/s40703-021-00171-2.

Fathi, A., Tirado, C., Mazari, M., & Nazarian, S. (2019). Models for Estimation of Lightweight Deflectometer Moduli for Unbound Materials. Geo-Congress 2019: Geotechnical Materials, Modeling, and Testing. doi:10.1061/9780784482124.006.

Adigopula, V. K. (2022). A Simplified Empirical Approach for Prediction of Pavement Layer Moduli Values Using Lightweight Deflectometer Data. International Journal of Pavement Research and Technology, 15(3), 751–763. doi:10.1007/s42947-021-00050-0.

Bilodeau, J.-P., Kandji, M., & Nguyen, M.-L. (2021). Response analysis of subgrade soils using signal phase shift obtained from laboratory lightweight deflectometer (LWD) tests. Canadian Journal of Civil Engineering, 1–8. doi:10.1139/cjce-2021-0095.

Sabouri, M., Khabiri, S., Asgharzadeh, S. M., & Abdollahi, S. F. (2022). Investigating the Performance of Geogrid Reinforced Unbound Layer Using Light Weight Deflectometer (LWD). International Journal of Pavement Research and Technology, 15(1), 173–183. doi:10.1007/s42947-021-00015-3.

Kuttah, D. (2021). Determining the resilient modulus of sandy subgrade using cyclic light weight deflectometer test. Transportation Geotechnics, 27, 100482. doi:10.1016/j.trgeo.2020.100482.

AlShareedah, O., & Nassiri, S. (2021). Pervious concrete mixture optimization, physical, and mechanical properties and pavement design: A review. Journal of Cleaner Production, 288, 125095. doi:10.1016/j.jclepro.2020.125095.

Bilodeau, J.-P., Kandji, M., & Nguyen, M.-L. (2021). Response analysis of subgrade soils using signal phase shift obtained from laboratory lightweight deflectometer (LWD) tests. Canadian Journal of Civil Engineering, 1–8. doi:10.1139/cjce-2021-0095.

Isnaini Kurniawati Djaha, S., & Prayuda, H. (2019). Quality Assessment of Road Pavement using Lightweight Deflectometer. Proceedings of the Third International Conference on Sustainable Innovation 2019 – Technology and Engineering (IcoSITE 2019). doi:10.2991/icosite-19.2019.16.

Sabouri, M., Khabiri, S., Asgharzadeh, S. M., & Abdollahi, S. F. (2022). Investigating the Performance of Geogrid Reinforced Unbound Layer Using Light Weight Deflectometer (LWD). International Journal of Pavement Research and Technology, 15(1), 173–183. doi:10.1007/s42947-021-00015-3.

Hatmoko, J. U. D., Setiadji, B. H., & Wibowo, M. A. (2019). Investigating causal factors of road damage: a case study. International Conference on Sustainable Civil Engineering Structures and Construction Materials (SCESCM 2018), Volume 258, MATEC Web of Conferences. doi:10.1051/matecconf/201925802007.

Kumar, R., Adigopula, V. K., & Guzzarlapudi, S. D. (2017). Stiffness-Based Quality Control Evaluation of Modified Subgrade Soil Using Lightweight Deflectometer. Journal of Materials in Civil Engineering, 29(9), 4017137. doi:10.1061/(asce)mt.1943-5533.0001958.

Tirado, C., Gamez-Rios, K. Y., Fathi, A., Mazari, M., & Nazarian, S. (2017). Simulation of lightweight deflectometer measurements considering nonlinear behavior of geomaterials. Transportation Research Record, 2641, 58–65. doi:10.3141/2641-08.

Hariprasad, C., Umashankar, B., & Garala, T. K. (2019). Lightweight deflectometer for compaction quality control. Lecture Notes in Civil Engineering, 16, 35–42. doi:10.1007/978-981-13-0899-4_5.

Baker, W. J., & Meehan, C. L. (2020). Continuous Compaction Control Measurements for Quality Assurance in Conjunction with Light Weight Deflectometer Target Modulus Values, Geo-Congress 2020. doi:10.1061/9780784482803.040.

K. Roksana, T. Nowrin, and S. Hossain. (2019). A Detailed Overview of Light Weight Deflectometer (LWD). Proceedings of International Conference on Planning, Architectuire and Civil Engineering, 7-9 February, 2019, Rajshahi Universityu of Engineering & technology, Rajshahi, Bangladesh. Available online: https://icpaceruet.org/wp-content/uploads/2021/01/CE_05.pdf (accessed on February 2022).

Menke, A., Wieder, W., & Shoop, S. (2019). Using the Lightweight Deflectometer in Winter Climates. 18th International Conference on Cold Regions Engineering and 8th Canadian Permafrost Conference. doi:10.1061/9780784482599.021.

Park, S. S., Bobet, A., & Nantung, T. E. (2018). Correlation between Resilient Modulus (MR) of Soil, Light Weight Deflectometer (LWD), and Falling Weight Deflectometer (FWD). Joint Transformational Research Program, Indiana Department of Transportation and Purdue University, West Lafayette, United States. doi:10.5703/1288284316651.

Akmaz, E., Ullah, S., Tanyu, B. F., & Guler, E. F. (2020). Construction Quality Control of Unbound Base Course using Light Weight Deflectometer where Reclaimed Asphalt Pavement Aggregate is used as an Example. Transportation Research Record, 2674(10), 989–1002. doi:10.1177/0361198120934473.

Caroles, L., Djamaluddin, A. R., Amiruddin, A. A., & Arsyad, A. (2020). Correlation of modulus elasticity of Falling Weight Deflectometer (FWD) towards Light Weight Deflectometer (LWD) laboratory. IOP Conference Series: Earth and Environmental Science, 419(1). doi:10.1088/1755-1315/419/1/012039.

Ampadu, S. I. K., Arthur, T. D., Ackah, P., & Boadu, F. (2022). Construction and Monitoring of the Short-Term Strength Development of a Cement-Stabilized Lateritic Pavement Layer under Tropical Climatic Conditions. Lecture Notes in Civil Engineering, 164, 727–741. doi:10.1007/978-3-030-77230-7_55.

Caroles, L. (2021). The relationship of stiffness modulus on the Marshall Test equipment to the light weight deflectometer (LWD) laboratory. Ph.D. Thesis, Hasanuddin University, Kota Makassar, Indonesia. (In Indonesian).


Full Text: PDF

DOI: 10.28991/CEJ-2022-08-06-012

Refbacks





Copyright (c) 2022 Lucky Caroles

Creative Commons License
This work is licensed under a Creative Commons Attribution 4.0 International License.
x
Message