A Triangular Shell Element Based on Higher-order Strains for the Analysis of Static and Free Vibration
Abstract
Doi: 10.28991/CEJ-2022-08-10-06
Full Text: PDF
Keywords
References
Yang, H. T. Y., Saigal, S., Masud, A., & Kapania, R. K. (2000). A survey of recent shell finite elements. International Journal for Numerical Methods in Engineering, 47(1–3), 101–127. doi:10.1002/(SICI)1097-0207(20000110/30)47:1/3<101::AID-NME763>3.0.CO;2-C.
Zienkiewicz, O. C. (1967). The Finite Element Method in Structural and Continuum Mechanics: Numerical Solution of Problems in Structural and Contimuum Mechanics. McGraw-Hill, New York City, United States.
Liang, Y., & Izzuddin, B. A. (2022). Locking-free 6-noded triangular shell elements based on hierarchic optimization. Finite Elements in Analysis and Design, 204, 103741. doi:10.1016/j.finel.2022.103741.
Abed-Meraim, F., & Combescure, A. (2007). A physically stabilized and locking-free formulation of the (SHB8PS) solid-shell element. European Journal of Computational Mechanics, 16(8), 1037–1072. doi:10.3166/REMN.16.1037-1072.
Trinh, V. D., Abed-Meraim, F., & Combescure, A. (2011). A new assumed strain solid-shell formulation “SHB6” for the six-node prismatic finite element. Journal of Mechanical Science and Technology, 25(9), 2345–64. doi:10.1007/s12206-011-0710-7.
Batoz, J. ‐L, & Tahar, M. Ben. (1982). Evaluation of a new quadrilateral thin plate bending element. International Journal for Numerical Methods in Engineering, 18(11), 1655–1677. doi:10.1002/nme.1620181106.
Yang, H. T. Y., Saigal, S., & Liaw, D. G. (1990). Advances of thin shell finite elements and some applications-version I. Computers and Structures, 35(4), 481–504. doi:10.1016/0045-7949(90)90071-9.
Dagade, V. A., & Kulkarni, S. D. (2022). Static and free vibration analysis of sandwich shell panels using quadrilateral flat shell finite element. Materials Today: Proceedings, 63, 295–301. doi:10.1016/j.matpr.2022.03.084.
Jones, R. E., & Strome, D. R. (1966). Direct stiffness method analysis of shells of revolution utilizing curved elements. AIAA Journal, 4(9), 1519–1525. doi:10.2514/3.3729.
Connor, J. J., & Brebbia, C. (1967). Stiffness Matrix for Shallow Rectangular Shell Element. Journal of the Engineering Mechanics Division, 93(5), 43–65. doi:10.1061/jmcea3.0000894.
Cantin, G., & Clough, R. W. (1968). A curved, cylindrical-shell, finite element. AIAA Journal, 6(6), 1057–1062. doi.org/10.2514/3.4673.
Koziey, B. L., & Mirza, F. A. (1997). Consistent thick shell element. Computers and Structures, 65(4), 531–549. doi:10.1016/S0045-7949(96)00414-2.
Dawe, D. J. (1975). High-order triangular finite element for shell analysis. International Journal of Solids and Structures, 11(10), 1097–1110. doi:10.1016/0020-7683(75)90089-X.
Cowper, G. R., Lindberg, G. M., & Olson, M. D. (1970). A shallow shell finite element of triangular shape. International Journal of Solids and Structures, 6(8), 1133–1156. doi:10.1016/0020-7683(70)90052-1.
Kim, Y. H., Jones, R. F., & Lee, S. W. (1990). Study of 20-node solid element. Communications in Applied Numerical Methods, 6(3), 197–205. doi:10.1002/cnm.1630060306.
Ayad, R., Zouari, W., Meftah, K., Zineb, T. Ben, & Benjeddou, A. (2013). Enrichment of linear hexahedral finite elements using rotations of a virtual space fiber. International Journal for Numerical Methods in Engineering, 95(1), 46–70. doi:10.1002/nme.4500.
Belounar, L., & Guenfoud, M. (2005). A new rectangular finite element based on the strain approach for plate bending. Thin-Walled Structures, 43(1), 47–63. doi:10.1016/j.tws.2004.08.003.
Belounar, A., Benmebarek, S., Houhou, M. N., & Belounar, L. (2019). Static, free vibration, and buckling analysis of plates using strain-based Reissner–Mindlin elements. International Journal of Advanced Structural Engineering, 11(2), 211–230. doi:10.1007/s40091-019-0226-4.
Belounar, A., Benmebarek, S., & Belounar, L. (2020). Strain based triangular finite element for plate bending analysis. Mechanics of Advanced Materials and Structures, 27(8), 620–632. doi:10.1080/15376494.2018.1488310.
Belounar, A., Benmebarek, S., Houhou, M. N., & Belounar, L. (2020). Free Vibration with Mindlin Plate Finite Element Based on the Strain Approach. Journal of the Institution of Engineers (India): Series C, 101(2), 331–346. doi:10.1007/s40032-020-00555-w.
Boussem, F., Belounar, A., & Belounar, L. (2022). Assumed strain finite element for natural frequencies of bending plates. World Journal of Engineering, 19(5), 620–631. doi:10.1108/WJE-02-2021-0114.
Boussem, F., & Belounar, L. (2020). A Plate Bending Kirchhoff Element Based on Assumed Strain Functions. Journal of Solid Mechanics, 12(4), 935–952. doi:10.22034/jsm.2020.1901430.1601.
Belounar, A., Boussem, F., & Tati, A. (2022). A Novel C0 Strain-Based Finite Element for Free Vibration and Buckling Analyses of Functionally Graded Plates. Journal of Vibration Engineering and Technologies, 0123456789. doi:10.1007/s42417-022-00577-x.
Belounar, A., Boussem, F., Houhou, M. N., Tati, A., & Fortas, L. (2022). Strain-based finite element formulation for the analysis of functionally graded plates. Archive of Applied Mechanics, 92(7), 2061–2079. doi:10.1007/s00419-022-02160-y.
Belounar, A., Belounar, L., & Tati, A. (2022). An Assumed Strain Finite Element for Composite Plates Analysis. International Journal of Computational Methods. doi:10.1142/s0219876222500347.
Belarbi, M. T., & Maalem, T. (2005). On improved rectangular finite element for plane linear elasticity analysis. Revue Europeenne des Elements, 14(8), 985–997. doi:10.3166/reef.14.985-997.
Bouzidi, L., Belounar, L., & Guerraiche, K. (2019). Presentation of a new membrane strain-based finite element for static and dynamic analysis. International Journal of Structural Engineering, 10(1), 40–60. doi:10.1504/IJSTRUCTE.2019.101431.
Fortas, L., Belounar, L., & Merzouki, T. (2019). Formulation of a new finite element based on assumed strains for membrane structures. International Journal of Advanced Structural Engineering, 11, 9–18. doi:10.1007/s40091-019-00251-9.
Ram, A. K., & Mohanty, S. (2021). Experimental investigation on dynamic behavior of silt-rich fly ash using cyclic triaxial and bender element tests. Innovative Infrastructure Solutions, 6(4), 1-24. doi:10.1007/s41062-021-00582-1.
Barrera, C. S., & Tardiff, J. L. (2022). Static and dynamic properties of eggshell filled natural rubber composites for potential application in automotive vibration isolation and damping. Journal of Cleaner Production, 353, 131656. doi:10.1016/j.jclepro.2022.131656.
Belounar, L., & Guerraiche, K. (2014). A new strain based brick element for plate bending. Alexandria Engineering Journal, 53(1), 95–105. doi:10.1016/j.aej.2013.10.004.
Guerraiche, K. H., Belounar, L., & Bouzidi, L. (2018). A new eight nodes brick finite element based on the strain approach. Journal of Solid Mechanics, 10(1), 186–199.
Khiouani, H. E., Belounar, L., & Houhou, M. N. (2020). A new three-dimensional sector element for circular curved structures analysis. Journal of Solid Mechanics, 12(1), 165–174. doi:10.22034/jsm.2019.1867106.1430.
Messai, A., Belounar, L., & Merzouki, T. (2019). Static and free vibration of plates with a strain based brick element. European Journal of Computational Mechanics, 1–21. doi:10.1080/17797179.2018.1560845.
Ashwell, D. G., & Sabir, A. B. (1972). A new cylindrical shell finite element based on simple independent strain functions. International Journal of Mechanical Sciences, 14(3), 171–183. doi:10.1016/0020-7403(72)90074-4.
Djoudi, M. S., & Bahai, H. (2003). A shallow shell finite element for the linear and non-linear analysis of cylindrical shells. Engineering Structures, 25(6), 769–778. doi:10.1016/S0141-0296(03)00002-6.
Djoudi, M. S., & Bahai, H. (2004). A cylindrical strain-based shell element for vibration analysis of shell structures. Finite Elements in Analysis and Design, 40(13–14), 1947–1961. doi:10.1016/j.finel.2003.11.008.
Djoudi, M. S., & Bahai, H. (2004). Strain based finite element for the vibration of cylindrical panels with openings. Thin-Walled Structures, 42(4), 575–588. doi:10.1016/j.tws.2003.09.003.
Bourezane, M. (2017). An efficient strain based cylindrical shell finite element. Journal of Solid Mechanics, 9(3), 632–649.
Timoshenko, S., & Woinowsky-Krieger, S. (1959). Theory of plates and shells. McGraw-hill, New York, United States.
Macneal, R. H., & Harder, R. L. (1985). A proposed standard set of problems to test finite element accuracy. Finite Elements in Analysis and Design, 1(1), 3–20. doi:10.1016/0168-874x(85)90003-4.
Sabir, A. B., & Lock, A. C. (1972). A curved, cylindrical shell, finite element. International Journal of Mechanical Sciences, 14(2), 125–135. doi:10.1016/0020-7403(72)90093-8.
Lindberg, G.M., Olson, M.D. & Cowper, E.R. (1969). New Developments in the Finite Element Analysis of Shells. National Research Council of Canada, Quarterly Bulletin of the Division of Mechanical Engineering and the National Aeronautical Establishment, 4, 1-38.
ASabir, A. B., & Charchaechi, T. A. (1982). Curved rectangular and general quadrilateral shell finite elements for cylindrical shells. The math of finite element and application, 231-239.
Soedel, W. (2004). Vibrations of shells and plates. CRC Press, Boca Raton, United States. doi:10.4324/9780203026304.
Lim, C. W., & Liew, K. M. (1995). A higher order theory for vibration of shear deformable cylindrical shallow shells. International Journal of Mechanical Sciences, 37(3), 277–295. doi:10.1016/0020-7403(95)93521-7.
Petyt, M. (1971). Vibration of curved plates. Journal of Sound and Vibration, 15(3), 381–395. doi:10.1016/0022-460X(71)90432-9.
Kanok‐nukulchai, W. (1979). A simple and efficient finite element for general shell analysis. International Journal for Numerical Methods in Engineering, 14(2), 179–200. doi:10.1002/nme.1620140204.
Huang, H. C., & Hinton, E. (1986). A new nine node degenerated shell element with enhanced membrane and shear interpolation. International Journal for Numerical Methods in Engineering, 22(1), 73–92. doi:10.1002/nme.1620220107.
Lee, S. J., & Han, S. E. (2001). Free-vibration analysis of plates and shells with a nine-node assumed natural degenerated shell element. Journal of Sound and Vibration, 241(4), 605–633. doi:10.1006/jsvi.2000.3313.
DOI: 10.28991/CEJ-2022-08-10-06
Refbacks
- There are currently no refbacks.
Copyright (c) 2022 Hamida SEKKOUR, Lamine Belounar, Abderahim Belounar, Faiçal Boussem, Lahcene Fortas
This work is licensed under a Creative Commons Attribution 4.0 International License.