Armor Layer Uniformity and Thickness in Stationary Conditions with Steady Uniform Flow

Cahyono Ikhsan, Ariva S. Permana, Arlendenovega S. Negara


The continuous movement of riverbed particles due to turbulent flow determines the stability of non-cohesive riverbeds and banks during riverbed and bank erosion and sedimentation. This study emulated the stable channel design by deriving the low maintenance cost of the channel through bed protection by an armor layer. The study investigated the effects of shear stress and grain size uniformity to determine the minimum non-cohesive armor layer thickness for the stability of riverbeds under steady uniform flow conditions. Experiments were conducted with four different discharges, five armor material gradations, and five bed-slope variations in a full-scale flume. We observed and recorded the behaviors of the five gradations of armor materials for given discharges and bed slopes. Eighty data points were recorded and analyzed. The hydraulic analysis of the flow along with the soil mechanics analysis of the armor materials was done. The soil mechanic analysis was particularly focused on the uniformity coefficient of the armor layer, Cu, to derive the armor layer equation. However, for the manageability of the study, we set the limit of the Cu between 3.0 and 6.0. From the viewpoint of non-erodibility, a wider Cu value indicated a thinner armor layer. Variables that govern the armor layer thickness and the layer thickness itself were derived and proposed. The variables, namely Cu, shear stress (t0 and tc), and mean diameter of the bed load and armor materials (Db50 and Da50). Our results show that these variables governed the thickness of the armor layer, and this is expected to contribute to the design of stable natural channels, which can minimize the cost of irrigation canal maintenance and development.


Doi: 10.28991/CEJ-2022-08-06-01

Full Text: PDF


Flow Shear Stress; Armor Layer Thickness and Uniformity; Bed Material Grain Size; Flume; Experiment.


Griffiths, G. A. (1981). Stable-channel design in gravel-bed Rivers. Journal of Hydrology, 52(3-4), 291–305. doi:10.1016/0022-1694(81)90176-1.

Everard, M., & Powell, A. (2002). Rivers as living systems. Aquatic Conservation: Marine and Freshwater Ecosystems, 12(4), 329–337. doi:10.1002/aqc.533.

Iberall, A.S. (1987). On Rivers. Self-Organizing Systems. Life Science Monographs. Springer, Boston, United States. doi:10.1007/978-1-4613-0883-6_3.

Ettema, R. (1984). Sampling armor-layer sediments. Journal of Hydraulic Engineering, 110(7), 992-996. doi:10.1061/(ASCE)0733-9429(1984)110:7(992).

Lamberti, A., & Paris, E. (1992). Analysis of armouring process through laboratory experiments. Dynamics of gravel-bed rivers, John Wiley & Sons, Chapter 11, 227-250.

Shen, H. W., & Lu, J. Y. (1983). Development and prediction of bed armoring. Journal of Hydraulic Engineering, 109(4), 611-629. doi:10.1061/(ASCE)0733-9429(1983)109:4(611).

Vázquez-Tarrío, D., Piégay, H., & Menéndez-Duarte, R. (2020). Textural signatures of sediment supply in gravel-bed rivers: Revisiting the armour ratio. Earth-Science Reviews, 207. doi:10.1016/j.earscirev.2020.103211.

Abrahams, A. D., Li, G., Krishnan, C., & Atkinson, J. F. (2001). A sediment transport equation for interrill overland flow on rough surfaces. Earth Surface Processes and Landforms, 26(13), 1443–1459. doi:10.1002/esp.286.

Yang, C. T., & Molinas, A. (1982). Sediment transport and unit stream power function. Journal of the Hydraulics Division, 108(6), 774-793. doi:10.1061/JYCEAJ.0005874.

Zhang, S., Zhu, Z., Peng, J., He, L., & Chen, D. (2021). Laboratory study on the evolution of gravel-bed surfaces in bed armoring processes. Journal of Hydrology, 597. doi:10.1016/j.jhydrol.2020.125751.

Bettess, R., & Frangipane, A. (2003). A one-layer model to predict the time development of static armour. Journal of Hydraulic Research, 41(2), 179–194. doi:10.1080/00221680309499960.

Tait, S. J., Willetts, B. B., & Maizels, J. K. (1992). Laboratory observations of bed armouring and changes in bedload composition. Wiley, New York, United States.

Proffitt, G. T. (1980). Selective transport and armouring of non-uniform alluvial sediments. PhD Thesis, University of Canterbury, Christchurch, New Zealand. Available online: (accessed on February 2022).

Parker, G., Klingeman, P. C., & McLean, D. G. (1982). Bedload and Size Distribution in Paved Gravel-Bed Streams. Journal of the Hydraulics Division, 108(4), 544–571. doi:10.1061/jyceaj.0005854.

Wilcock, P. R., & Crowe, J. C. (2003). Surface-based transport model for mixed-size sediment. Journal of hydraulic engineering, 129(2), 120-128. doi:10.1061/(ASCE)0733-9429(2003)129:2(120).

Curran, J. C., & Wilcock, P. R. (2005). Effect of Sand Supply on Transport Rates in a Gravel-Bed Channel. Journal of Hydraulic Engineering, 131(11), 961–967. doi:10.1061/(asce)0733-9429(2005)131:11(961).

Wilcock, P. R., & DeTemple, B. T. (2005). Persistence of armor layers in gravel-bed streams. Geophysical Research Letters, 32(8), 1–4. doi:10.1029/2004GL021772.

Bakke, P. D., Basdekas, P. O., Dawdy, D. R., & Klingeman, P. C. (1999). Calibrated Parker-Klingeman Model for Gravel Transport. Journal of Hydraulic Engineering, 125(6), 657–660. doi:10.1061/(asce)0733-9429(1999)125:6(657).

Wilcock, P. R. (2001). Toward a practical method for estimating sediment-transport rates in gravel-bed rivers. Earth Surface Processes and Landforms, 26(13), 1395–1408. doi:10.1002/esp.301.

Tan, L., & Curran, J. C. (2012). Comparison of Turbulent Flows over Clusters of Varying Density. Journal of Hydraulic Engineering, 138(12), 1031–1044. doi:10.1061/(asce)hy.1943-7900.0000635.

Mrokowska, M. M., & Rowinski, P. M. (2019). Impact of unsteady flow events on bedload transport: A review of laboratory experiments. Water (Switzerland), 11(5). doi:10.3390/w11050907.

Berni, C., Perret, E., & Camenen, B. (2018). Characteristic time of sediment transport decrease in static armour formation. Geomorphology, 317, 1–9. doi:10.1016/j.geomorph.2018.04.004.

Elgueta-Astaburuaga, M. A., & Hassan, M. A. (2019). Sediment storage, partial transport, and the evolution of an experimental gravel bed under changing sediment supply regimes. Geomorphology, 330, 1–12. doi:10.1016/j.geomorph.2018.12.018.

Ancey, C. (2020). Bedload transport: a walk between randomness and determinism. Part 2. Challenges and prospects. Journal of Hydraulic Research, 58(1), 18–33. doi:10.1080/00221686.2019.1702595.

Limerinos, J. T. (1969). Determination of the Manning coefficient from measured bed roughness in natural channels. Water Resources Division, Geological Survey, US Department of the Interior, Washington, D.C., United States.

Shields, A. (1936). Application of similarity principles and turbulence research to bed-load movement. Soil Conservation Service, Cooperative Laboratory, California Institute of Technology, Pasadena, United States.

Gomez, B. (2022). The efficiency of the river machine. Geomorphology, 410, 108271. doi:10.1016/j.geomorph.2022.108271.

Wang, Q., Pan, Y., Yang, K., & Nie, R. (2020). Structural properties of the static armor during formation and reestablishment in gravel-bed rivers. Water (Switzerland), 12(7). doi:10.3390/w12071845.

Wang, Q., Li, L., Li, X., Wang, Y., & Nie, R. (2021). Calculation Model to Predict the Static Armor Layer Size Distribution After the Reconstruction of a Gravel River Bed. Frontiers in Earth Science, 9. doi:10.3389/feart.2021.660216.

Anand, A., Beg, M., & Kumar, N. (2021). Experimental studies and analysis on mobilization of the cohesionless sediments through alluvial channel: a review. Civil Engineering Journal, 7(5), 915-936. doi:10.28991/cej-2021-03091700.

van der Meer, J. W. (1986). Deterministic and Probabilistic Design of Breakwater Armour Layers. Dock and Harbour Authority, 67(785), 177–180. doi:10.1061/(asce)0733-950x(1988)114:1(66).

Argente, G., Gómez-Martín, M. E., & Medina, J. R. (2018). Hydraulic stability of the armor layer of overtopped breakwaters. Journal of Marine Science and Engineering, 6(4), 143. doi:10.3390/jmse6040143.

Escarameia, M. (1999). River and channel revetments - a design manual. Thomas Telford, London, United Kingdom. doi:10.1680/racradm.26919.

Eaton, B., & Millar, R. (2017). Predicting gravel bed river response to environmental change: the strengths and limitations of a regime-based approach. Earth Surface Processes and Landforms, 42(6), 994–1008. doi:10.1002/esp.4058.

Ackers, P., & White, W. R. (1973). Sediment Transport: New Approach and Analysis. Journal of the Hydraulics Division, 99(11), 2041–2060. doi:10.1061/jyceaj.0003791.

Płaczkowska, E., Krzemień, K., Gorczyca, E., Bojarczuk, A., & Żelazny, M. (2020). Disturbances in coarse bedload transport in a high-mountain stream channel system (Western Tatras, Poland). Geomorphology, 371, 107428. doi:10.1016/j.geomorph.2020.107428.

Full Text: PDF

DOI: 10.28991/CEJ-2022-08-06-01


  • There are currently no refbacks.

Copyright (c) 2022 Cahyono Ikhsan, Ariva Sugandi Permana, Arlendenovega Satria Negara

Creative Commons License
This work is licensed under a Creative Commons Attribution 4.0 International License.