Bridge’s Overall Structural Scheme Analysis in High Seismic Risk Permafrost Regions

Zhihua Xiong, Jianbing Chen, Chen Liu, Jinping Li, Wenwen Li

Abstract


The mechanism of pile-soil reaction in frozen ground is not clear at present, but it is obvious that the reduction of dead weight will be beneficial to the seismic resistance of bridges. In view of the limited bridge engineering practice in high seismic risk permafrost regions, the paper addressed the structural performance of the superstructure and its effect on piles in these special regions. Four superstructures with different dead weights were compared, and bored piles were designed. Numerical simulations were implemented to investigate the refreezing time of the bored pile foundation. The concrete pile cooled rapidly in the first two days. The refreezing times of the GFRP, prestressed concrete T-girder, integrated composite girder, and MVFT girder were 15d, 37d, 39d, and 179d, respectively. The refreezing time of a pile in the same soil layer is mainly affected by the pile’s diameter, and it is significantly correlated to the square of the pile diameter. It reflects that the selection of bridge superstructures in the permafrost region is very important, which has been ignored in previous studies. The pile length and pile diameter of the lighter superstructure can be shorter and smaller to reduce the refreezing time and alleviate the thermal disturbance.

 

Doi: 10.28991/CEJ-2022-08-07-01

Full Text: PDF


Keywords


Permafrost; High Seismic; Bridge; Scheme; Pile.

References


Zhang, T. (2001). [Review of Geocryology in China, by Z. Youwu, G. Dongxin, Q. Guoqing, C. Guodong, & L. Shude]. Arctic, Antarctic, and Alpine Research, 33(2), 245–246. doi:10.2307/1552227.

Qiao, J., Zhen, J., Liu, Z. (2019). The distribution and major engineering problems of special soil and rock along One Belt One Road. Journal of Catastrophology, 65–71. doi:10.3969/j.issn.1000-811X.2019.Z1.012.

Cheng, G., Wu, Q., & Ma, W. (2009). Innovative designs of permafrost roadbed for the Qinghai-Tibet Railway. Science in China, Series E: Technological Sciences, 52(2), 530–538. doi:10.1007/s11431-008-0291-6.

Zhang, M., Pei, W., Li, S., Lu, J., & Jin, L. (2017). Experimental and numerical analyses of the thermo-mechanical stability of an embankment with shady and sunny slopes in permafrost regions. Applied Thermal Engineering, 127, 1478–1487. doi:10.1016/j.applthermaleng.2017.08.074.

Qi-Dong, D., Shao-Ping, C., Ji, M., & Peng, D. (2014). Seismic Activities and Earthquake Potential in the Tibetan Plateau. Chinese Journal of Geophysics, 57(5), 678–697. doi:10.1002/cjg2.20133.

Xi-yin, Z. H. A. N. G., Xing-chong, C. H. E. N., & Jian-qiang, G. A. O. Research advance on seismic performance of bridges in permafrost regions. Journal of Lanzhou University of Technology, 46(2), 116. (In Chinese).

Wanping, W. A. N. G., ZHANG, X., Xingchong, C. H. E. N., Yi, W. A. N. G., & Shengsheng, Y. U. Study on dynamic interaction between bridge pile and soil with permafrost effect: status and review. Journal of Glaciology and Geocryology, 4, 1213-1219.

Vali, R. (2021). Water Table Effects on the Behaviors of the Reinforced Marine Soil-footing System. Journal of Human, Earth, and Future, 2(3), 296–305. doi:10.28991/hef-2021-02-03-09.

Jin, H. J. (2006). Degradation of permafrost in the Da and Xiao Hinggan Mountains, Northeast China, and preliminary assessment of its trend. Journal of Glaciology and Geocryology, 28(4), 467-476.

Li, T., Wei, Q. C., & Liu, L. (2005). Effect of climate getting warmer on the seismic safety performance of Qinghai Tibet Railway bridges in the perennial frozen soil region. Journal of the China Railway Society, 27(4), 104-109.

Xiong, Z. H., Chen, J. B., Zhu, D. P. & Fu, J. (2018). Review of Design Method and Experiment on Bridge Pile Foundation in Permafrost Regions. Low Temperature Architecture Technology, 84–87. doi:10.13905/j.cnki.dwjz.2018.08.026.

Lai, Y. M., Zhang, Y., Zhang, S. J., Jin, L., & Chang, X. X. (2009). Experimental study of strength of frozen sandy soil under different water contents and temperatures. Rock and Soil Mechanics, 30(12), 3665–3670. doi:10.16285/j.rsm.2009.12.018.

Ekeleme, A. C., Ekwueme, B. N., & Agunwamba, J. C. (2021). Modeling Contaminant Transport of Nitrate in Soil Column. Emerging Science Journal, 5(4), 471–485. doi:10.28991/esj-2021-01290.

Aksenov, V. I., & Kistanov, O. G. (2008). Estimation of resistance components to an axial load on piles embedded in permafrost. Soil Mechanics and Foundation Engineering, 45(2), 71–75. doi:10.1007/s11204-008-9001-4.

Zhang, J., Zhang, Z., Zhang, S., Brouchkov, A., Xie, C., & Zhu, S. (2022). Numerical simulation of the influence of pile geometry on the heat transfer process of foundation soil in permafrost regions. Case Studies in Thermal Engineering, 102324. doi:10.1016/j.csite.2022.102324.

Jia, X. Y., Li, W. J., & Zhu, Y. Q. (2003). Analysis on hydration influence of grouting pile concrete in permafrost regions. Journal of Shijiazhuang Railway Institute, 16(4), 88-90. doi:10.13319/j.cnki.sjztddxxbzrb.2003.04.023.

Hou, X., Chen, J., Jin, H., Rui, P., Zhao, J., & Mei, Q. (2020). Thermal characteristics of cast-in-place pile foundations in warm permafrost at Beiluhe on interior Qinghai-Tibet Plateau: Field observations and numerical simulations. Soils and Foundations, 60(1), 90–102. doi:10.1016/j.sandf.2020.01.008.

Chen, K., Yu, Q., Guo, L., Zhang, G., & Zhang, D. (2020). A fast- freezing system to enhance the freezing force of cast-in-place pile quickly in permafrost regions. Cold Regions Science and Technology, 179, 103140. doi:10.1016/j.coldregions.2020.103140.

Shang, Y., Niu, F., Lin, Z., & Sun, T. (2020). Analysis of the cooling effect of a concrete thermal pile in permafrost regions. Applied Thermal Engineering, 173, 115254. doi:10.1016/j.applthermaleng.2020.115254.

Shang, Y., Niu, F., Wu, X., & Liu, M. (2018). A novel refrigerant system to reduce refreezing time of cast-in-place pile foundation in permafrost regions. Applied Thermal Engineering, 128, 1151–1158. doi:10.1016/j.applthermaleng.2017.09.079.

Yan, N., & Yu, T. (2020). Heat Transfer between Concrete Bored Cast-In-Place Piles and Surrounding Frozen Soil in Ice-Rich Area. Journal of Civil, Construction and Environmental Engineering, 5(5), 102. doi:10.11648/j.jccee.20200505.11.

Hou, X., Chen, J., Yang, B., Wang, J., Dong, T., Rui, P., & Mei, Q. (2022). Monitoring and simulation of the thermal behavior of cast-in-place pile group foundations in permafrost regions. Cold Regions Science and Technology, 196, 103486. doi:10.1016/j.coldregions.2022.103486.

Chen, J. B., Li, J. P., & Xiong, Z. H. Inspection of Bridge Damage in Maduo Earthquake and Its Effects on Bridge Design in Cold Region. Journal of Water Resources and Architectural Engineering, 19(05), 99–104. doi:10.3969/j.issn.1672-1144.2021.05.018. (In Chinese).

Teng, J. (2018). New-material hybrid structures. Tumu Gongcheng Xuebao/China Civil Engineering Journal, 51(12), 1–11. (In Chinese)

Ziehl, P. H., Engelhardt, M. D., Fowler, T. J., Ulloa, F. V., Medlock, R. D., & Schell, E. (2009). Design and Field Evaluation of Hybrid FRP/Reinforced Concrete Superstructure System. Journal of Bridge Engineering, 14(5), 309–318. doi:10.1061/(asce)be.1943-5592.0000002.

Petzek, E., & bancila, R. (2010). Efficient solutions for composite bridges. International Scientific Conference. CIBv2010. 12 – 13 November 2010, Braşov, Romania.

Xiong, Z., Li, J., Wang, S., Liu, Y., & Xin, H. (2018). Concrete filled tubular arch modified-VFT bridge and its LLSI analysis. Proceedings of the 2017 3rd International Forum on Energy, Environment Science and Materials (IFEESM 2017). doi:10.2991/ifeesm-17.2018.250.

Xiong, Z., Li, J., Zhu, H., Liu, X., & Liang, Z. (2022). Ultimate Bending Strength Evaluation of MVFT Composite Girder by using Finite Element Method and Machine Learning Regressors. Latin American Journal of Solids and Structures, 19(3). doi:10.1590/1679-78257006.

Xiong, Z. H., Chen, J. B., & Wang, S. S. Structural analysis of prefabricated steel-concrete composite bridge applied in cold and high-altitude permafrost regions. Steel Construction, 33(04), 46-51. (In Chinese).

China Communications Construction Company Ltd. (2017). Highway construction technology in high altitude and cold regions. CCCC First Highway Consultants Co. China. Available online: http://en.ccccltd.cn/ (accessed on May 2022).

JTG 3363-2019. (2019). Specifications for Design of Foundation of Highway Bridges and Culverts. Specification for design of Foundation of Highway Bridge and Culverts, Ministry of Transport of the People’s Republic of China, Beijing, China. Available online: https://m.freebz.net/hangye/299522.html (accessed on May 2022).

Yanmin, J., Da, X., & Hongyu, G. (2010). Study on phase transformation effect due to refrozen process of cast-in-place piles and frozen soil. Engineering Mechanics, 27(Suppl 1), 144-149. (In Chinese).

Xiong, W., Liu, M. G., Zhang, Q. H., & Wang, Z. M. (2009). Temperature distribution along piles in permafrost regions. Yantu Lixue / Rock and Soil Mechanics, 30(6), 1658–1664. doi:10.16285/j.rsm.2009.06.009.

Shang, Y.-H. Study on ground temperature of cast-in-place pile of bridge in permafrost regions. Journal of Glaciology and Geocryology, 38(4), 1129–1135. doi:10.7522/j.issn.1000-0240.2016.0131.

Peng, X., Lan, C., Wang, S., Sui, S., & Zeng, L. (2015). Effects of the C-S-H powder on the hydration process and mechanism of cement. Jianzhu Cailiao Xuebao/Journal of Building Materials, 18(2), 195–201. doi:10.3969/j.issn.1007-9629.2015.02.003. (In Chinese).

He, R. X., Jin, H. J., Zhao, S. P., & Deng, Y. S. (2018). Review of status and progress of the study in thermal conductivity of frozen soil. Journal of Glaciology Geocryology, 40(1), 116–126. doi:10.7522/j.issn.1000-0240.2017.0314. (In Chinese).


Full Text: PDF

DOI: 10.28991/CEJ-2022-08-07-01

Refbacks

  • There are currently no refbacks.




Copyright (c) 2022 Zhihua Xiong

Creative Commons License
This work is licensed under a Creative Commons Attribution 4.0 International License.
x
Message