Mechanical Properties of Eco-friendly Concrete Made with Sugarcane Bagasse Ash

Tareg Abdalla Abdalla, David O. Koteng, Stanley M. Shitote, M. Matallah


Modern concretes lay emphasis on high strength in order to reduce structural member sizes to reduce materials used; high early strength to promote fast construction; high durability to reduce maintenance costs; and the incorporation of industrial and agricultural wastes to reduce environmental degradation. The incorporation of industrial and agricultural wastes into concrete as cement replacement materials reduces the amount of cement used in the production of concrete and the CO2emissions arising from cement production. Sugarcane bagasse is a waste product from the extraction of juice from sugar cane. It is estimated that 1.7 million tons of bagasse are produced worldwide every year. Much of the bagasse is used as boiler fuel and to produce electricity, and the ash is dumped in earth fills, resulting in critical environmental pollution that requires immediate attention. Available literature shows that when burned under controlled conditions, a pozzolanic ash of high silica content can be obtained, which can be used in concrete production with several advantages. This study investigates the mechanical properties of concrete designed for high strength and incorporating processed sugarcane bagasse ash in amounts of 10–40% by weight of cement in a binary combination with silica fume. Concrete workability in the fresh state and compressive, flexural, and tensile strengths in the hardened state are investigated. Water absorption of hardened concrete is also investigated as an indicator of potential durability. The results show that the mix containing 10% SCBA has the highest mechanical strength, and increasing the SCBA percentage reduces water absorption. However, the workability of concrete in the fresh state reduces substantially with an increase in ash content.


Doi: 10.28991/CEJ-2022-08-06-010

Full Text: PDF


Eco-Friendly Concrete; Sugarcane Bagasse Ash; Mechanical Strength; Water Absorption.


Jahanzaib Khalil, M., Aslam, M., & Ahmad, S. (2021). Utilization of sugarcane bagasse ash as cement replacement for the production of sustainable concrete – A review. Construction and Building Materials, 270, 1-14. doi:10.1016/j.conbuildmat.2020.121371.

Bheel, N., Sohu, S., Jhatial, A. A., Memon, N. A., & Kumar, A. (2022). Combined effect of coconut shell and sugarcane bagasse ashes on the workability, mechanical properties and embodied carbon of concrete. Environmental Science and Pollution Research, 29(4), 5207–5223. doi:10.1007/s11356-021-16034-3.

Ahmad, W., Ahmad, A., Ostrowski, K. A., Aslam, F., Joyklad, P., & Zajdel, P. (2021). Sustainable approach of using sugarcane bagasse ash in cement-based composites: A systematic review. Case Studies in Construction Materials, 15. doi:10.1016/j.cscm.2021.e00698.

Chindaprasirt, P., Kroehong, W., Damrongwiriyanupap, N., Suriyo, W., & Jaturapitakkul, C. (2020). Mechanical properties, chloride resistance and microstructure of Portland fly ash cement concrete containing high volume bagasse ash. Journal of Building Engineering, 31. doi:10.1016/j.jobe.2020.101415.

Jagadesh, P., Ramachandramurthy, A., & Murugesan, R. (2018). Evaluation of mechanical properties of Sugar Cane Bagasse Ash concrete. Construction and Building Materials, 176, 608–617. doi:10.1016/j.conbuildmat.2018.05.037.

Onikeku, O., Shitote, S. M., Mwero, J., Adedeji, A. A., & Kanali, C. (2019). Compressive Strength and Slump Prediction of Two Blended Agro Waste Materials Concretes. The Open Civil Engineering Journal, 13(1), 118–128. doi:10.2174/1874149501913010118.

Fairbairn, E. M. R., Americano, B. B., Cordeiro, G. C., Paula, T. P., Toledo Filho, R. D., & Silvoso, M. M. (2010). Cement replacement by sugar cane bagasse ash: CO2 emissions reduction and potential for carbon credits. Journal of Environmental Management, 91(9), 1864–1871. doi:10.1016/j.jenvman.2010.04.008.

Hussein, A. A. E., Shafiq, N., Nuruddin, M. F., & Memon, F. A. (2014). Compressive strength and microstructure of sugar cane bagasse ash concrete. Research Journal of Applied Sciences, Engineering and Technology, 7(12), 2569–2577. doi:10.19026/rjaset.7.569.

Le, D. H., & Sheen, Y. N. (2022). Assessment of properties of mortars modified with sugarcane bagasse ash processed by heating at different temperatures as cement replacement. European Journal of Environmental and Civil Engineering. doi:10.1080/19648189.2022.2047794.

Mali, A. K., & Nanthagopalan, P. (2021). Comminution: A Supplementation for Pozzolanic Adaptation of Sugarcane Bagasse Ash. Journal of Materials in Civil Engineering, 33(12), 4021343. doi:10.1061/(asce)mt.1943-5533.0003985.

Joshaghani, A., & Moeini, M. A. (2018). Evaluating the Effects of Sugarcane-Bagasse Ash and Rice-Husk Ash on the Mechanical and Durability Properties of Mortar. Journal of Materials in Civil Engineering, 30(7), 4018144. doi:10.1061/(asce)mt.1943-5533.0002317.

Andrade Neto, J. da S., de França, M. J. S., Amorim Júnior, N. S. de, & Ribeiro, D. V. (2021). Effects of adding sugarcane bagasse ash on the properties and durability of concrete. Construction and Building Materials, 266. doi:10.1016/j.conbuildmat.2020.120959.

Xu, Q., Ji, T., Gao, S. J., Yang, Z., & Wu, N. (2018). Characteristics and applications of sugar cane bagasse ash waste in cementitious materials. Materials, 12(1). doi:10.3390/ma12010039.

Dineshkumar, R., & Balamurugan, P. (2021). Behavior of high-strength concrete with sugarcane bagasse ash as replacement for cement. Innovative Infrastructure Solutions, 6(2). doi:10.1007/s41062-020-00450-4.

Uzbas, B., & Aydin, A. C. (2020). Microstructural Analysis of Silica Fume Concrete with Scanning Electron Microscopy and X-Ray Diffraction. Engineering, Technology & Applied Science Research, 10(3), 5845–5850. doi:10.48084/etasr.3288.

Kazmi, S. M. S., Munir, M. J., Patnaikuni, I., & Wu, Y. F. (2017). Pozzolanic reaction of sugarcane bagasse ash and its role in controlling alkali silica reaction. Construction and Building Materials, 148, 231–240. doi:10.1016/j.conbuildmat.2017.05.025.

Landa-Ruiz, L., Landa-Gómez, A., Mendoza-Rangel, J. M., Landa-Sánchez, A., Ariza-Figueroa, H., Méndez-Ramírez, C. T., Santiago-Hurtado, G., Moreno-Landeros, V. M., Croche, R., & Baltazar-Zamora, M. A. (2021). Physical, mechanical and durability properties of ecofriendly ternary concrete made with sugar cane bagasse ash and silica fume. In Crystals (Vol. 11, Issue 9). doi:10.3390/cryst11091012.

Khan, M. I., & Siddique, R. (2011). Utilization of silica fume in concrete: Review of durability properties. Resources, Conservation and Recycling, 57, 30–35. doi:10.1016/j.resconrec.2011.09.016.

Gupta, A., Gupta, N., & Saxena, K. K. (2021). Mechanical and durability characteristics assessment of geopolymer composite (Gpc) at varying silica fume content. Journal of Composites Science, 5(9). doi:10.3390/JCS5090237.

Wagh, M., & Waghe, U. P. (2022). Development of self-compacting concrete blended with sugarcane bagasse ash. Materials Today: Proceedings, 60, 1787–1792. doi:10.1016/j.matpr.2021.12.459.

Berenguer, R., Lima, N., Valdés, A. C., Medeiros, M. H. F., Lima, N. B. D., Delgado, J. M. P. Q., Silva, F. A. N., Azevedo, A. C., Guimarães, A. S., & Rangel, B. (2020). Durability of Concrete Structures with Sugar Cane Bagasse Ash. Advances in Materials Science and Engineering. doi:10.1155/2020/6907834.

Cordeiro, G. C., Andreão, P. V., & Tavares, L. M. (2019). Pozzolanic properties of ultrafine sugar cane bagasse ash produced by controlled burning. Heliyon, 5(10). doi:10.1016/j.heliyon.2019.e02566.

Chindaprasirt, P., Sujumnongtokul, P., & Posi, P. (2019). Durability and mechanical properties of pavement concrete containing bagasse ash. Materials Today: Proceedings, 17, 1612–1626. doi:10.1016/j.matpr.2019.06.191.

Jha, P., Sachan, A. K., & Singh, R. P. (2021). Agro-waste sugarcane bagasse ash (ScBA) as partial replacement of binder material in concrete. Materials Today: Proceedings, 44, 419–427. doi:10.1016/j.matpr.2020.09.751.

Sua-Iam, G., & Makul, N. (2013). Use of increasing amounts of bagasse ash waste to produce self-compacting concrete by adding limestone powder waste. Journal of Cleaner Production, 57, 308–319. doi:10.1016/j.jclepro.2013.06.009.

Abdulhussein, F. K., Jawad, Z. F., Frayah, Q. J., & Salman, A. J. (2021). Investigation of the Effect of Addition Nano-papyrus Cane on the Mechanical Properties of Concrete. Civil Engineering Journal, 7(02), 226-235. doi:10.28991/cej-2021-03091649.

Rukzon, S., & Chindaprasirt, P. (2012). Utilization of bagasse ash in high-strength concrete. Materials and Design, 34, 45–50. doi:10.1016/j.matdes.2011.07.045.

Shafiq, N., Elhameed, A. A., & Nuruddin, M. F. (2014). Durability of sugar cane bagasse ash (SCBA) concrete towards chloride ion penetration. Applied Mechanics and Materials, 567, 369–374. doi:10.4028/

Vaitkevičius, V., Šerelis, E., & Hilbig, H. (2014). The effect of glass powder on the microstructure of ultra-high performance concrete. Construction and Building Materials, 68, 102–109. doi:10.1016/j.conbuildmat.2014.05.101.

Koteng, D. O., & Chen, C. T. (2015). Strength development of lime-pozzolana pastes with silica fume and fly ash. Construction and Building Materials, 84, 294–300. doi:10.1016/j.conbuildmat.2015.03.052.

Nikhade, A., & Nag, A. (2022). Effective utilization of sugarcane bagasse Ash, rice husk Ash& Metakaolin in concrete. Materials Today: Proceedings. doi:10.1016/j.matpr.2022.04.422.

Le, D. H., Sheen, Y. N., & Nguyen, K. H. (2022). Enhancing compressive strength and durability of self-compacting concrete modified with controlled-burnt sugarcane bagasse ash-blended cements. Frontiers of Structural and Civil Engineering, 16(2), 161–174. doi:10.1007/s11709-021-0796-7.

Shah, M. I., Javed, M. F., Aslam, F., & Alabduljabbar, H. (2022). Machine learning modeling integrating experimental analysis for predicting the properties of sugarcane bagasse ash concrete. Construction and Building Materials, 314. doi:10.1016/j.conbuildmat.2021.125634.

Ahmad, A., Rehman, K. U., Ahmad, F., Ahmad, A., & Siffat, M. A. (2021). Effect of Calcination on the Chemical and Microstructural Properties of Sugarcane Bagasse Ash (SCBA). Journal of Engineering Research and Reports, 1–9. doi:10.9734/jerr/2021/v21i817482.

Rajasekar, A., Arunachalam, K., Kottaisamy, M., & Saraswathy, V. (2018). Durability characteristics of Ultra High Strength Concrete with treated sugarcane bagasse ash. Construction and Building Materials, 171, 350–356. doi:10.1016/j.conbuildmat.2018.03.140.

Mangi, S. A., Jamaluddin, N., Wan Ibrahim, M. H., Abdullah, A. H., Abdul Awal, A. S. M., Sohu, S., & Ali, N. (2017). Utilization of sugarcane bagasse ash in concrete as partial replacement of cement. IOP Conference Series: Materials Science and Engineering, 271(1). doi:10.1088/1757-899X/271/1/012001.

Amin, M. N., Ashraf, M., Kumar, R., Khan, K., Saqib, D., Ali, S. S., & Khan, S. (2020). Role of Sugarcane Bagasse Ash in Developing Sustainable Engineered Cementitious Composites. Frontiers in Materials, 7. doi:10.3389/fmats.2020.00065.

Quedou, P. G., Wirquin, E., & Bokhoree, C. (2021). Sustainable concrete: Potency of sugarcane bagasse ash as a cementitious material in the construction industry. Case Studies in Construction Materials, 14. doi:10.1016/j.cscm.2021.e00545.

Jagadesh, P., Ramachandra Murthy, A., & Murugesan, R. (2020). Effect of processed sugar cane bagasse ash on mechanical and fracture properties of blended mortar. Construction and Building Materials, 262. doi:10.1016/j.conbuildmat.2020.120846.

Farrant, W. E., Babafemi, A. J., Kolawole, J. T., & Panda, B. (2022). Influence of Sugarcane Bagasse Ash and Silica Fume on the Mechanical and Durability Properties of Concrete. Materials, 15(9), 3018. doi:10.3390/ma15093018.

Wu, N., Ji, T., Huang, P., Fu, T., Zheng, X., & Xu, Q. (2022). Use of sugar cane bagasse ash in ultra-high performance concrete (UHPC) as cement replacement. Construction and Building Materials, 317. doi:10.1016/j.conbuildmat.2021.125881.

Akram, T., Memon, S. A., & Obaid, H. (2009). Production of low cost self-compacting concrete using bagasse ash. Construction and Building Materials, 23(2), 703–712. doi:10.1016/j.conbuildmat.2008.02.012.

Amin, M. N., Ahmad, A., Shahzada, K., Khan, K., Jalal, F. E., & Qadir, M. G. (2022). Mechanical and microstructural performance of concrete containing high-volume of bagasse ash and silica fume. Scientific Reports, 12(1). doi:10.1038/s41598-022-08749-1.

Shafiq, N., Hussein, A. A. E., Nuruddin, M. F., & Al Mattarneh, H. (2018). Effects of sugarcane bagasse ash on the properties of concrete. Proceedings of the Institution of Civil Engineers: Engineering Sustainability, 171(3), 123–132. doi:10.1680/jensu.15.00014.

Full Text: PDF

DOI: 10.28991/CEJ-2022-08-06-010


  • There are currently no refbacks.

Copyright (c) 2022 Tareg Abdalla Abdalla Abdalla

Creative Commons License
This work is licensed under a Creative Commons Attribution 4.0 International License.