Three-Dimensional Nonlinear Dynamic Analysis of Base Isolated Cylindrical Steel Tank
Abstract
Doi: 10.28991/CEJ-2022-08-06-013
Full Text: PDF
Keywords
References
American Lifelines Alliance (ALA). (2013). Seismic Fragility Formulation for Water Systems-Part2-Appendices. Partnership between the Federal Emergency Management (FEMA) and the American Society of Civil Engineers (ASCE), United States. Available online: https://www.americanlifelinesalliance.com/pdf/Part_2_Appendices.pdf (accessed on February 2022).
Waghmare, M. V., Madhekar, S. N., & Matsagar, V. A. (2020). Influence of nonlinear fluid viscous dampers on seismic response of RC elevated storage tanks. Civil Engineering Journal, 6, 98–118. doi:10.28991/cej-2020-SP(EMCE)-09.
Jacobsen, L. S. (1949). Impulsive hydrodynamics of fluid inside a cylindrical tank and of fluid surrounding a cylindrical pier. Bulletin of the Seismological Society of America, 39(3), 189–204. doi:10.1785/bssa0390030189.
Housner, G. W. (1963). The dynamic behavior of water tanks. Bulletin of the Seismological Society of America, 53(2), 381–387. doi:10.1785/bssa0530020381.
Veletsos, A. S. (1973). Seismic effects in flexible liquid storage tanks. Proceedings of the 5th world conference on earthquake engineering (5WCEE), 25-29 June, 1973, Rome, Italy.
Haroun, M. A., & Housner, G. W. (1981). Seismic design of liquid storage tanks. Journal of the Technical Councils of ASCE, 107(1), 191-207. doi:10.1061/jtcad9.0000080.
Malhotra, P. K., Wenk, T., & Wieland, M. (2000). Simple procedure for seismic analysis of liquid-storage tanks. Structural Engineering International: Journal of the International Association for Bridge and Structural Engineering (IABSE), 10(3), 197–201. doi:10.2749/101686600780481509.
Virella, J. C., Godoy, L. A., & Suárez, L. E. (2006). Fundamental modes of tank-liquid systems under horizontal motions. Engineering Structures, 28(10), 1450–1461. doi:10.1016/j.engstruct.2005.12.016.
Maekawa, A., Shimizu, Y., Suzuki, M., & Fujita, K. (2010). Vibration test of a 1/10 reduced scale model of cylindrical water storage tank. Journal of Pressure Vessel Technology, Transactions of the ASME, 132(5). doi:10.1115/1.4001915.
Maekawa, A. (2012). Recent Advances in Seismic Response Analysis of Cylindrical Liquid Storage Tanks. Earthquake-Resistant Structures - Design, Assessment and Rehabilitation. IntechOpen, London, United Kingdom. doi:10.5772/28735.
Kangda, M. Z. (2021). An approach to finite element modeling of liquid storage tanks in ANSYS: A review. Innovative Infrastructure Solutions, 6(4), 1-20. doi:10.1007/s41062-021-00589-8.
Hadj-Djelloul, N., & Djermane, M. (2020). Effect of geometric imperfection on the dynamic of elevated water tanks. Civil Engineering Journal, 6(1), 85–97. doi:10.28991/cej-2020-03091455.
Ganji, M., & Kazem, H. (2017). Comparing Seismic Performance of Steel Structures Equipped with Viscous Dampers and Lead Rubber Bearing Base Isolation under Near-Field Earthquake. Civil Engineering Journal, 3(2), 124–136. doi:10.28991/cej-2017-00000079.
Chalhoub, M. S., & Kelly, J. M. (1990). Shake Table Test of Cylindrical Water Tanks in Base‐Isolated Structures. Journal of Engineering Mechanics, 116(7), 1451–1472. doi:10.1061/(asce)0733-9399(1990)116:7(1451).
Kim, N. S., & Lee, D. G. (1995). Pseudodynamic test for evaluation of seismic performance of base-isolated liquid storage tanks. Engineering Structures, 17(3), 198–208. doi:10.1016/0141-0296(95)00076-J.
Malhotra, P. K. (1997). Seismic Response of Soil-Supported Unanchored Liquid-Storage Tanks. Journal of Structural Engineering, 123(4), 440–450. doi:10.1061/(asce)0733-9445(1997)123:4(440).
Malhotra, P. K. (1997). New method for seismic isolation of liquid-storage tanks. Earthquake Engineering and Structural Dynamics, 26(8), 839–847. doi:10.1002/(SICI)1096-9845(199708)26:8<839::AID-EQE679>3.0.CO;2-Y.
Malhotra, P. K. (1998). Seismic Strengthening of Liquid-Storage Tanks with Energy-Dissipating Anchors. Journal of Structural Engineering, 124(4), 405–414. doi:10.1061/(asce)0733-9445(1998)124:4(405).
Shrimali, M. K., & Jangid, R. S. (2003). Seismic response of base-isolated liquid storage tanks. JVC/Journal of Vibration and Control, 9(10), 1201–1218. doi:10.1177/107754603030612.
Shrimali, M. K., & Jangid, R. S. (2004). Seismic analysis of base-isolated liquid storage tanks. Journal of Sound and Vibration, 275(1–2), 59–75. doi:10.1016/S0022-460X(03)00749-1.
Güler, E., & Alhan, C. (2021). Performance limits of base-isolated liquid storage tanks with/without supplemental dampers under near-fault earthquakes. Structures, 33, 355–367. doi:10.1016/j.istruc.2021.04.023.
Tsipianitis, A., & Tsompanakis, Y. (2021). Optimizing the seismic response of base-isolated liquid storage tanks using swarm intelligence algorithms. Computers and Structures, 243, 106407. doi:10.1016/j.compstruc.2020.106407.
Jiang, Y., Zhao, Z., Zhang, R., De Domenico, D., & Pan, C. (2020). Optimal design based on analytical solution for storage tank with inerter isolation system. Soil Dynamics and Earthquake Engineering, 129, 105924. doi:10.1016/j.soildyn.2019.105924.
Kumar, H., Saha, S.K. (2021). Seismic Response of Liquid Storage Tank Considering Uncertain Soil Parameters. Recent Advances in Computational Mechanics and Simulations. Lecture Notes in Civil Engineering, 103. Springer, Singapore. doi:10.1007/978-981-15-8138-0_45.
Vern, S., Shrimali, M. K., Bharti, S. D., & Datta, T. K. (2021). Response and damage evaluation of base-isolated concrete liquid storage tank under seismic excitations. Engineering Research Express, 3(4), 45002. doi:10.1088/2631-8695/ac2a93.
API 650. (2012). Welded steel tanks for oil storage-Appendix E: Seismic design of storage tanks, (12th Ed.). American Petroleum Institute. American Petroleum Institute, Washington, D.C., United States.
Djermane, M., Zaoui, D., Labbaci, B., & Hammadi, F. (2014). Dynamic buckling of steel tanks under seismic excitation: Numerical evaluation of code provisions. Engineering Structures, 70, 181–196. doi:10.1016/j.engstruct.2014.03.037.
Virella, J. C., Godoy, L. A., & Suárez, L. E. (2006). Dynamic buckling of anchored steel tanks subjected to horizontal earthquake excitation. Journal of Constructional Steel Research, 62(6), 521–531. doi:10.1016/j.jcsr.2005.10.001.
ANSYS Inc. (2022). The ANSYS Structural Software System. Pennsylvania, United States. Available online: https://www.ansys.com/products/structures#tab1-5 (accessed on July 2022).
Robinson, W. H. (1982). Lead‐rubber hysteretic bearings suitable for protecting structures during earthquakes. Earthquake Engineering & Structural Dynamics, 10(4), 593–604. doi:10.1002/eqe.4290100408.
Moslemi, M. (2011). Seismic response of ground cylindrical and elevated conical reinforced concrete tanks. Ph.D. Thesis, Ryerson University, Toronto, Canada.
Megget, L. M. (1978). Analysis and Design of a Base-Isolated Reinforced Concrete Frame Building. Bulletin of the New Zealand National Society for Earthquake Engineering, 11(4), 245–254. doi:10.5459/bnzsee.11.4.245-254.
Moslemi, M., & Kianoush, M. R. (2012). Parametric study on dynamic behavior of cylindrical ground-supported tanks. Engineering Structures, 42, 214–230. doi:10.1016/j.engstruct.2012.04.026.
DOI: 10.28991/CEJ-2022-08-06-013
Refbacks
- There are currently no refbacks.
Copyright (c) 2022 Abdellali Saria, Mohamed Djermane, Nasser Dine Hadj-Djelloul
This work is licensed under a Creative Commons Attribution 4.0 International License.