Shear Behavior of Strengthened Ferrocement RC Beams by Steel Wire Mesh
Abstract
Doi: 10.28991/CEJ-2022-08-05-04
Full Text: PDF
Keywords
References
Mousavi, S. M., Ranjbar, M. M., & Madandoust, R. (2019). Combined effects of steel fibers and water to cementitious materials ratio on the fracture behavior and brittleness of high strength concrete. Engineering Fracture Mechanics, 216, 106517. doi:10.1016/j.engfracmech.2019.106517.
Usman Rashid, M. (2020). Experimental investigation on durability characteristics of steel and polypropylene fiber reinforced concrete exposed to natural weathering action. Construction and Building Materials, 250, 118910. doi:10.1016/j.conbuildmat.2020.118910.
ACI 318-19. (2019). Building Code Requirements for Structural Concrete and Commentary. American Concrete Institute, Farmington Hills, United States. doi:10.14359/51716937.
Ghavami, K. (2005). Bamboo as reinforcement in structural concrete elements. Cement and Concrete Composites, 27(6), 637–649. doi:10.1016/j.cemconcomp.2004.06.002.
Portnov, G., Bakis, C. E., Lackey, E., & Kulakov, V. (2013). FRP Reinforcing bars - Designs and methods of manufacture (Review of Patents). Mechanics of Composite Materials, 49(4), 381–400. doi:10.1007/s11029-013-9355-1.
Batson, G. (2000). Ferrocement and laminated cementitious composites. Materials and Structures. Springer, Switzerland. doi:10.1007/bf02484171.
Rajagopalan, K. (1978). Discussion of “Analysis and Behavior of Ferrocement in Flexure.” Journal of the Structural Division, 104(7), 1177–1178. doi:10.1061/jsdeag.0004962.
Lalaj, O., Yardım, Y., & Yılmaz, S. (2015). Recent perspectives for ferrocement. Research on Engineering Structures and Materials, 1(1), 11-23. doi:10.17515/resm2015.04st0123.
Shannag, M. J., & Higazey, M. (2020). Strengthening and Repair of a Precast Reinforced Concrete Residential Building. Civil Engineering Journal, 6(12), 2457–2473. doi:10.28991/cej-2020-03091630.
Lourenço, L., Zamanzadeh, Z., Barros, J. A. O., & Rezazadeh, M. (2018). Shear strengthening of RC beams with thin panels of mortar reinforced with recycled steel fibres. Journal of Cleaner Production, 194, 112–126. doi:10.1016/j.jclepro.2018.05.096
Abadel, A. A. (2021). Experimental investigation for shear strengthening of reinforced self-compacting concrete beams using different strengthening schemes. Journal of Materials Research and Technology, 15, 1815–1829. doi:10.1016/j.jmrt.2021.09.012.
Qeshta, I. M., Shafigh, P., Jumaat, M. Z., Abdulla, A. I., Ibrahim, Z., & Alengaram, U. J. (2014). The use of wire mesh–epoxy composite for enhancing the flexural performance of concrete beams. Materials & Design, 60, 250-259 doi:10.1016/j.matdes.2014.03.075.
Prathima, S., & Jaishankar, P. (2015). Experimental investigation of wired mesh - RC beam. International Journal of ChemTech Research, 8(2), 815–821.
Al-Sulaimani, G. J., Ahmad, S. F., & Basunbul, I. A. (1989). Study of the flexural strength of ferrocement ‘flanged’beams. The Arabian Journal for Science and Engineering, 14(1), 33-46.
Mansur, M. A., & Ong, K. C. G. (1987). Shear strength of ferrocement beams. Structural Journal, 84(1), 10-17. doi:10.14359/2738.
Walker, P., & Damo, M. (1997). Shear reinforcement for brickwork beams using ferrocement. Journal of ferrocement, 27, 33-45.
Basunbul I.A., Gubati A.A., Al-Sulaimani G.J., Baluch M.H., (1991) Flexural Behavior of Ferro-Cement Sand-Wish Load Bearing wall Panel, ACI Materials Journal - American Concrete Institute 87 (4). 348–354.
Meng, Q., Wu, C., Su, Y., Li, J., Liu, J., & Pang, J. (2019). A study of steel wire mesh reinforced high performance geopolymer concrete slabs under blast loading. Journal of Cleaner Production, 210, 1150–1163. doi:10.1016/j.jclepro.2018.11.083.
Jaafer, A. A. (2012). Behavior of Short Concrete Columns Strengthened with Ferrocement. Ph.D. Thesis, University of Basrah, Basrah, Iraq.
El-Sayed, T. A., & Erfan, A. M. (2018). Improving shear strength of beams using ferrocement composite. Construction and Building Materials, 172, 608–617. doi:10.1016/j.conbuildmat.2018.03.273.
ASTM C109/C109M-02. (2017). Standard Test Method for Compressive Strength of Hydraulic Cement Mortars (Using 2-in. or [50 mm] Cube Specimens). ASTM International, Pennsylvania, United States. doi:10.1520/c0109_c0109m-01.
Sytsma, L. F. (1999). ASTM standards on environmental sampling. (2nd Ed.). American Society for Testing and Materials (ASTM), Pennsylvania, United States. doi:10.1002/ep.670180104.
ASTM C191-21. Standards Test Methods for Time of Setting of Hydraulic Cement by Vicat Needle. ASTM International, Pennsylvania, United States. doi:10.1520/C0191-21.
Iraqi Specification No. 45. (1984). Aggregates of Natural Resources used for Concrete and Construction. Baghdad, Iraq.
ASTM C494/C494M-08. (2017). Standard Specification for Chemical Admixtures for Concrete. ASTM International, Pennsylvania, United States. doi:10.1520/C0494_C0494M-08.
ASTM A615/A615M-09. (2010). Standard Specification for Deformed and Plain Carbon-Steel Bars for Concrete reinforcement. ASTM International, Pennsylvania, United States. doi:10.1520/A0615_A0615M-09.
Baumgart, F. (2000). Stiffness - An unknown world of mechanical science? Injury (Elsevier), 31, 14–23. doi:10.1016/s0020-1383(00)80040-6.
Marzouk, H., & Hussein, A. (1992). Experimental investigation on the behavior of high-strength concrete slabs. Structural Journal, 88(6), 701-713. doi:10.14359/1261.
Liberati, E. A. P., Marques, M. G., Leonel, E. D., Almeida, L. C., & Trautwein, L. M. (2019). Failure analysis of punching in reinforced concrete flat slabs with openings adjacent to the column. Engineering Structures, 182, 331–343. doi:10.1016/j.engstruct.2018.11.073.
Priestley, M. J. N., & Park, R. (1987). Strength of Ductility of Concrete Bridge Columns under Seismic Loading. ACI Structural Journal, 84(1), 61–76. doi:10.14359/2800.
Robertson, I. N., & Durrani, A. J. (1991). Gravity load effect on seismic behavior of exterior slab-column connections. Structural Journal, 88(3), 255-267. doi:10.14359/3090.
OHNO, T., & NISHIOKA, T. (1984). An experimental study on energy absorption capacity of columns in reinforced concrete structures. Doboku Gakkai Ronbunshu, 1984(350), 23–33. doi:10.2208/jscej.1984.350_23. (In Japanese).
DOI: 10.28991/CEJ-2022-08-05-04
Refbacks
- There are currently no refbacks.
Copyright (c) 2022 Sarah Hussain Hameed
This work is licensed under a Creative Commons Attribution 4.0 International License.