Shear Behavior of Strengthened Ferrocement RC Beams by Steel Wire Mesh

Sarah H. Hameed, Abdulkhaliq A. Jaafer


This paper investigates the possibility of strengthening a ferrocement RC beam with steel wire mesh under static loading. This experimental study included testing ten normal and high-strength concrete specimens made with ferrocement. The main parameters were the steel wire mesh layers 4, 8, and 10 in addition to the compressive strength and shear to span to depth ratio of 1.8 and 2.5. The cracking load, ultimate load, deflections, initial stiffness, energy absorption, diagonal and compressive strains, and crack pattern and failure modes of such beams were discussed. The outcomes exhibited that the beams behave linearly until they reach about 21.5% of the ultimate strength for the normal concrete beam and 23.2% for the high-strength concrete beam. The steel wire mesh presence affected the ultimate strength of the concrete beam, which increased the cracking load by an average of 15.5% for the high-strength RC beam and by 24.2% for normal-strength RC ones. The ultimate load was increased by an average of 40% for the high-strength strengthened beams and with less percentage for the normal ones, which was 31%. The  ratio affected the ultimate load-carrying capacity and maximum displacement directly, which increase  led to a decrease in the ultimate load-carrying capacity. The strengthening by steel wire mesh enhanced the initial stiffness, ductility, and energy absorption.


Doi: 10.28991/CEJ-2022-08-05-04

Full Text: PDF


Steel Wire Mesh; Ferrocement; Compressive Strength; Ductility; Energy Absorption.


Mousavi, S. M., Ranjbar, M. M., & Madandoust, R. (2019). Combined effects of steel fibers and water to cementitious materials ratio on the fracture behavior and brittleness of high strength concrete. Engineering Fracture Mechanics, 216, 106517. doi:10.1016/j.engfracmech.2019.106517.

Usman Rashid, M. (2020). Experimental investigation on durability characteristics of steel and polypropylene fiber reinforced concrete exposed to natural weathering action. Construction and Building Materials, 250, 118910. doi:10.1016/j.conbuildmat.2020.118910.

ACI 318-19. (2019). Building Code Requirements for Structural Concrete and Commentary. American Concrete Institute, Farmington Hills, United States. doi:10.14359/51716937.

Ghavami, K. (2005). Bamboo as reinforcement in structural concrete elements. Cement and Concrete Composites, 27(6), 637–649. doi:10.1016/j.cemconcomp.2004.06.002.

Portnov, G., Bakis, C. E., Lackey, E., & Kulakov, V. (2013). FRP Reinforcing bars - Designs and methods of manufacture (Review of Patents). Mechanics of Composite Materials, 49(4), 381–400. doi:10.1007/s11029-013-9355-1.

Batson, G. (2000). Ferrocement and laminated cementitious composites. Materials and Structures. Springer, Switzerland. doi:10.1007/bf02484171.

Rajagopalan, K. (1978). Discussion of “Analysis and Behavior of Ferrocement in Flexure.” Journal of the Structural Division, 104(7), 1177–1178. doi:10.1061/jsdeag.0004962.

Lalaj, O., Yardım, Y., & Yılmaz, S. (2015). Recent perspectives for ferrocement. Research on Engineering Structures and Materials, 1(1), 11-23. doi:10.17515/resm2015.04st0123.

Shannag, M. J., & Higazey, M. (2020). Strengthening and Repair of a Precast Reinforced Concrete Residential Building. Civil Engineering Journal, 6(12), 2457–2473. doi:10.28991/cej-2020-03091630.

Lourenço, L., Zamanzadeh, Z., Barros, J. A. O., & Rezazadeh, M. (2018). Shear strengthening of RC beams with thin panels of mortar reinforced with recycled steel fibres. Journal of Cleaner Production, 194, 112–126. doi:10.1016/j.jclepro.2018.05.096

Abadel, A. A. (2021). Experimental investigation for shear strengthening of reinforced self-compacting concrete beams using different strengthening schemes. Journal of Materials Research and Technology, 15, 1815–1829. doi:10.1016/j.jmrt.2021.09.012.

Qeshta, I. M., Shafigh, P., Jumaat, M. Z., Abdulla, A. I., Ibrahim, Z., & Alengaram, U. J. (2014). The use of wire mesh–epoxy composite for enhancing the flexural performance of concrete beams. Materials & Design, 60, 250-259 doi:10.1016/j.matdes.2014.03.075.

Prathima, S., & Jaishankar, P. (2015). Experimental investigation of wired mesh - RC beam. International Journal of ChemTech Research, 8(2), 815–821.

Al-Sulaimani, G. J., Ahmad, S. F., & Basunbul, I. A. (1989). Study of the flexural strength of ferrocement ‘flanged’beams. The Arabian Journal for Science and Engineering, 14(1), 33-46.

Mansur, M. A., & Ong, K. C. G. (1987). Shear strength of ferrocement beams. Structural Journal, 84(1), 10-17. doi:10.14359/2738.

Walker, P., & Damo, M. (1997). Shear reinforcement for brickwork beams using ferrocement. Journal of ferrocement, 27, 33-45.

Basunbul I.A., Gubati A.A., Al-Sulaimani G.J., Baluch M.H., (1991) Flexural Behavior of Ferro-Cement Sand-Wish Load Bearing wall Panel, ACI Materials Journal - American Concrete Institute 87 (4). 348–354.

Meng, Q., Wu, C., Su, Y., Li, J., Liu, J., & Pang, J. (2019). A study of steel wire mesh reinforced high performance geopolymer concrete slabs under blast loading. Journal of Cleaner Production, 210, 1150–1163. doi:10.1016/j.jclepro.2018.11.083.

Jaafer, A. A. (2012). Behavior of Short Concrete Columns Strengthened with Ferrocement. Ph.D. Thesis, University of Basrah, Basrah, Iraq.

El-Sayed, T. A., & Erfan, A. M. (2018). Improving shear strength of beams using ferrocement composite. Construction and Building Materials, 172, 608–617. doi:10.1016/j.conbuildmat.2018.03.273.

ASTM C109/C109M-02. (2017). Standard Test Method for Compressive Strength of Hydraulic Cement Mortars (Using 2-in. or [50 mm] Cube Specimens). ASTM International, Pennsylvania, United States. doi:10.1520/c0109_c0109m-01.

Sytsma, L. F. (1999). ASTM standards on environmental sampling. (2nd Ed.). American Society for Testing and Materials (ASTM), Pennsylvania, United States. doi:10.1002/ep.670180104.

ASTM C191-21. Standards Test Methods for Time of Setting of Hydraulic Cement by Vicat Needle. ASTM International, Pennsylvania, United States. doi:10.1520/C0191-21.

Iraqi Specification No. 45. (1984). Aggregates of Natural Resources used for Concrete and Construction. Baghdad, Iraq.

ASTM C494/C494M-08. (2017). Standard Specification for Chemical Admixtures for Concrete. ASTM International, Pennsylvania, United States. doi:10.1520/C0494_C0494M-08.

ASTM A615/A615M-09. (2010). Standard Specification for Deformed and Plain Carbon-Steel Bars for Concrete reinforcement. ASTM International, Pennsylvania, United States. doi:10.1520/A0615_A0615M-09.

Baumgart, F. (2000). Stiffness - An unknown world of mechanical science? Injury (Elsevier), 31, 14–23. doi:10.1016/s0020-1383(00)80040-6.

Marzouk, H., & Hussein, A. (1992). Experimental investigation on the behavior of high-strength concrete slabs. Structural Journal, 88(6), 701-713. doi:10.14359/1261.

Liberati, E. A. P., Marques, M. G., Leonel, E. D., Almeida, L. C., & Trautwein, L. M. (2019). Failure analysis of punching in reinforced concrete flat slabs with openings adjacent to the column. Engineering Structures, 182, 331–343. doi:10.1016/j.engstruct.2018.11.073.

Priestley, M. J. N., & Park, R. (1987). Strength of Ductility of Concrete Bridge Columns under Seismic Loading. ACI Structural Journal, 84(1), 61–76. doi:10.14359/2800.

Robertson, I. N., & Durrani, A. J. (1991). Gravity load effect on seismic behavior of exterior slab-column connections. Structural Journal, 88(3), 255-267. doi:10.14359/3090.

OHNO, T., & NISHIOKA, T. (1984). An experimental study on energy absorption capacity of columns in reinforced concrete structures. Doboku Gakkai Ronbunshu, 1984(350), 23–33. doi:10.2208/jscej.1984.350_23. (In Japanese).

Full Text: PDF

DOI: 10.28991/CEJ-2022-08-05-04


  • There are currently no refbacks.

Copyright (c) 2022 Sarah Hussain Hameed

Creative Commons License
This work is licensed under a Creative Commons Attribution 4.0 International License.