Investigating Local Resources and Wisdom in Partner Regions Surrounding the Nation's Capital for Road Network Development

Junaidi ., Sakti A. Adisasmita, Muhammad S. Pallu, M. Isran Ramli


The development of the New Indonesia’s Capital, called the IKN, will undoubtedly draw many people to come and engage in the IKN region, although not inside the IKN area, since the development is confined to a small area with smart city, blue city, and forest city ideas merged. Restrictions on mobility inside the IKN area will almost definitely create issues for road network connectivity across IKN's surrounding areas, so it was deemed essential to have a road network development model that maintains IKN as a limited area while also functioning as a catalyst for economic growth in partner areas. The focus of this research is to provide a model for developing a road network based on local wisdom and the resources of each partner region surrounding IKN. The method employed in this study is based on gathering secondary data of the surrounding areas, which has local resources and local wisdom. The resources and the local wisdom are considered a trip attractor. The IKN masterplan data was also employed in this study as the main subject. Principles and road network development theory were used to analyze the data. The findings of this research led to the development of a new road network in various regions, including Senoni, Gusig, and Tukuq. This road network is deemed necessary to be developed, due to its trip attraction potential. It is hoped that the implementation of these new road networks will also have positive impacts on the development of partner areas surrounding IKN.


Doi: 10.28991/CEJ-2022-08-05-06

Full Text: PDF


National Capital; Smart City; Forest City; Transportation; Road Network Development.


Chen, K., Chen, Y.-J., Lin, H., Lu, Y., Lin, Z., Teng, L., … liao, lingyun. (2022). The Impact of Rail Accessibility and Road Spatial Pattern on House Prices. SSRN Electronic Journal. doi:10.2139/ssrn.4017142.

Papp, C. R., Dostál, I., Hlaváč, V., Berchi, G. M., & Romportl, D. (2022). Rapid linear transport infrastructure development in the Carpathians: A major threat to the integrity of ecological connectivity for large carnivores. Nature Conservation, 47, 35–63. doi:10.3897/natureconservation.47.71807.

Loreti, S., Ser-Giacomi, E., Zischg, A., Keiler, M., & Barthelemy, M. (2022). Local impacts on road networks and access to critical locations during extreme floods. Scientific Reports, 12(1). doi:10.1038/s41598-022-04927-3.

Ansari Esfeh, M., Kattan, L., Lam, W. H. K., Salari, M., & Ansari Esfe, R. (2022). Road network vulnerability analysis considering the probability and consequence of disruptive events: A spatiotemporal incident impact approach. Transportation Research Part C: Emerging Technologies, 136, 103549. doi:10.1016/j.trc.2021.103549.

Bonita, R., & Wadley, D. (2022). Disposal of government offices in Jakarta pending relocation of the Indonesian capital: an application of multi-criteria analysis. Property Management. doi:10.1108/PM-10-2020-0068.

Jafari, A., Both, A., Singh, D., Gunn, L., & Giles-Corti, B. (2022). Building the road network for city-scale active transport simulation models. Simulation Modelling Practice and Theory, 114, 102398. doi:10.1016/j.simpat.2021.102398.

Rivera-Royero, D., Galindo, G., Jaller, M., & Betancourt Reyes, J. (2022). Road network performance: A review on relevant concepts. Computers & Industrial Engineering, 165, 107927. doi:10.1016/j.cie.2021.107927.

Huynh, H. N., & Ramli, M. A. B. (2022). Urban Landscape from the Structure of Road Network: A Complexity Perspective. arXiv preprint arXiv:2201.10949. doi:10.48550/arXiv.2201.10949.

Sarkar, M., Roy, T. B., & Roy, R. (2022). An Assessment Study on Hierarchical Integrity of Road Connectivity and Nodal Accessibility of Maternal Health Care Service Centres in Itahar Block, Uttar Dinajpur District, West Bengal. Advances in Geographical and Environmental Sciences, 439–457, Springer, Singapore. doi:10.1007/978-981-16-7310-8_22.

Arhin, S., Manandhar, B., & Baba-Adam, H. (2020). Predicting Travel Times of Bus Transit in Washington, D.C. Using Artificial Neural Networks. Civil Engineering Journal, 6(11), 2245–2261. doi:10.28991/cej-2020-03091615

Du, M., Jiang, X., & Chen, A. (2022). Identifying critical links using network capacity-based indicator in multi-modal transportation networks. Transportmetrica B: Transport Dynamics, 10(1), 1126–1150. doi:10.1080/21680566.2021.2023371.

Rathore, A., & Garg, R. K. (2022). Assessing Resilience of Transportation Networks Under Multi-hazards: A Review. Lecture Notes in Civil Engineering, 183, 29–43. doi:10.1007/978-981-16-5543-2_3.

Jiang, Z., Dong, L., Wu, L., & Liu, Y. (2022). Quantifying navigation complexity in transportation networks. arXiv preprint arXiv:2201.07631. doi:10.48550/arXiv.2201.07631.

Pamucar, D., Ecer, F., & Deveci, M. (2021). Assessment of alternative fuel vehicles for sustainable road transportation of United States using integrated fuzzy FUCOM and neutrosophic fuzzy MARCOS methodology. Science of The Total Environment, 788, 147763. doi:10.1016/j.scitotenv.2021.147763

Argyroudis, S. A., Mitoulis, S. A., Hofer, L., Zanini, M. A., Tubaldi, E., & Frangopol, D. M. (2020). Resilience assessment framework for critical infrastructure in a multi-hazard environment: Case study on transport assets. Science of The Total Environment, 714, 136854. doi:10.1016/j.scitotenv.2020.136854

Serdar, M. Z., Koç, M., & Al-Ghamdi, S. G. (2022). Urban Transportation Networks Resilience: Indicators, Disturbances, and Assessment Methods. Sustainable Cities and Society, 76, 103452. doi:10.1016/j.scs.2021.103452.

Nguyen, T. K., Hoang, N. H., & Vu, H. L. (2022). A unified activity-based framework for one-way car-sharing services in multi-modal transportation networks. Transportation Research Part E: Logistics and Transportation Review, 157, 102551. doi:10.1016/j.tre.2021.102551.

Birge, J. R., Chan, T. C. Y., Pavlin, J. M., & Zhu, I. Y. (2022). Spatial Price Integration in Commodity Markets with Capacitated Transportation Networks. Operations Research. doi:10.1287/opre.2022.2288.

Zhang, F., Lu, J., Hu, X., Liu, X., & Chen, J. (2022). Optimal design of differentiated credit charging links in mixed-autonomy transportation networks. Applied Mathematical Modelling, 108, 646–669. doi:10.1016/j.apm.2022.04.015.

Petit, A., & Ouyang, Y. (2022). Design of heterogeneous flexible-route public transportation networks under low demand. Transportation Research Part C: Emerging Technologies, 138, 103612. doi:10.1016/j.trc.2022.103612.

Zhang, L., Qian, G., Song, Z., & Wang, D. (2022). Deploying dedicated lanes for connected and autonomous buses in urban transportation networks. Transportmetrica A: Transport Science, 1–33. doi:10.1080/23249935.2021.2005181.

Wołek, M., Wolański, M., Bartłomiejczyk, M., Wyszomirski, O., Grzelec, K., & Hebel, K. (2021). Ensuring sustainable development of urban public transport: A case study of the trolleybus system in Gdynia and Sopot (Poland). Journal of Cleaner Production, 279, 123807. doi:10.1016/j.jclepro.2020.123807

Xu, X.-K., Liu, X. F., Wang, L., Wu, Y., Lu, X., Wang, X., & Pei, S. (2022). Assessing the spread risk of COVID-19 associated with multi-mode transportation networks in China. Fundamental Research. doi:10.1016/j.fmre.2022.04.006.

Gabriel, N. R., Martin, K. K., Haslam, S. J., Faile, J. C., Kamens, R. M., & Gheewala, S. H. (2021). A comparative life cycle assessment of electric, compressed natural gas, and diesel buses in Thailand. Journal of Cleaner Production, 314, 128013. doi:10.1016/j.jclepro.2021.128013

Shang, W. L., Gao, Z., Daina, N., Zhang, H., Long, Y., Guo, Z., & Ochieng, W. Y. (2022). Benchmark Analysis for Robustness of Multi-Scale Urban Road Networks Under Global Disruptions. IEEE Transactions on Intelligent Transportation Systems. doi:10.1109/TITS.2022.3149969.

Gomes, G. (2022). A framework for hybrid simulation of transportation networks. Journal of Simulation, 16(2), 166–181. doi:10.1080/17477778.2020.1766387.

Dong, Y., Qian, J., & Zhai, C. (2022). Seismic risk assessment of transportation networks. Seismic Vulnerability Assessment of Civil Engineering Structures At Multiple Scales, 321–351, Woodhead Publishing, Swaston, United Kingdom. doi:10.1016/b978-0-12-824071-7.00007-x.

Seo, I.-J., & Cho, J. (2022). Structural Features of Public Bicycle Transportation Networks over Times of the Day: The Case of Seoul Public Bicycle. 2022 IEEE International Conference on Big Data and Smart Computing (BigComp). doi:10.1109/bigcomp54360.2022.00011.

Hassan, S., Amlan, H. A., Alias, N. E., Kadir, M. A. A., Mashros, N., & Sukor, N. S. A. (2022). Vulnerability of Road Transportation Networks: A Bibliometric Analysis. SSRN Electronic Journal. doi:10.2139/ssrn.4002940.

Lai, Q., & Zhang, H. (2022). Analysis of Identification Methods of Key Nodes in Transportation Network. Chinese Physics B. doi:10.1088/1674-1056/ac4a6c.

Unterluggauer, T., Rich, J., Andersen, P. B., & Hashemi, S. (2022). Electric vehicle charging infrastructure planning for integrated transportation and power distribution networks: A review. ETransportation, 12, 100163. doi:10.1016/j.etran.2022.100163.

Liu, K., Zhao, Y., & Zhang, Z.-H. (2022). A Dynamic Facility Location Problem with Random Demand and the Restoration of Transportation Networks in Disaster Relief. SSRN Electronic Journal. doi:10.2139/ssrn.4002257.

Glass, C., Davis, L., & Watkins-Lewis, K. (2022). A visualization and optimization of the impact of a severe weather disruption to an air transportation network. Computers & Industrial Engineering, 168, 107978. doi:10.1016/j.cie.2022.107978.

Ola, Q. (2022). The Role of Transportation Networks in enforcing the City Centrality; A case study of Budapest City. SUPTM 2022: 1st Conference on Future Challenges in Sustainable Urban Planning & Territorial Management. doi:10.31428/10317/10490.

Lanza, K., Burford, K., & Ganzar, L. A. (2022). Who travels where: Behavior of pedestrians and micromobility users on transportation infrastructure. Journal of Transport Geography, 98, 103269. doi:10.1016/j.jtrangeo.2021.103269.

Tatano, H., & Tsuchiya, S. (2021). Economic Impacts of the Transportation Network Disruption: An Extension of SCGE Model. Methodologies for Estimating the Economic Impacts of Natural Disasters, 85–95, Springer, Singapore. doi:10.1007/978-981-16-2719-4_6.

Liu, Y. C., McNeil, S., Hackl, J., & Adey, B. T. (2022). Prioritizing transportation network recovery using a resilience measure. Sustainable and Resilient Infrastructure, 7(1), 70–81. doi:10.1080/23789689.2019.1708180.

Full Text: PDF

DOI: 10.28991/CEJ-2022-08-05-06


  • There are currently no refbacks.

Copyright (c) 2022 Junaidi Junaidi, Sakti Adji Adisasmita, Muhammad Saleh Pallu, Muhammad Isran Ramli

Creative Commons License
This work is licensed under a Creative Commons Attribution 4.0 International License.