Liquefaction Potential Evaluation by Deterministic and Probabilistic Approaches

Md Belal Hossain, Md Roknuzzaman, Md Mahabub Rahman


Bangladesh is one of the world's most disaster-prone areas. The northwest region of Bangladesh is the most seismically active region. Dinajpur is the district closest to the Himalayan frontal thrust, making it the most vulnerable to earthquake-related liquefaction. Therefore, the in-situ parameters are used to assess the liquefaction susceptibility of the subsurface geology for the Dinajpur district in terms of soil liquefaction safety factor (FS), the liquefaction potential index (LPI), and the liquefaction probability (PL). This study used deterministic and probabilistic techniques to estimate the liquefaction susceptibility of the area based on standard penetration test (SPT) N values. SPT data was collected at 160 different places within the study area. In an earthquake scenario with Mw = 6.5, liquefaction resistance is evaluated at each location using a 0.20g peak ground acceleration (PGA). The results of the SPT-based liquefaction assessment techniques were found to be considerably different. The soil strata prone to liquefaction in different zones of the city have been determined based on a common comparison. According to deterministic and probabilistic techniques, it has been found that, out of 160 locations, 36 and 50 sites are susceptible to liquefaction. Then, using geospatial techniques (IDW interpolation), hazard maps were created depending on the potential for liquefaction of particular locations. Finally, using an independent secondary dataset, the resulting hazard maps were validated to examine the developed approach. The obtained R2values for each regression analysis event were more than 0.79. Therefore, the produced hazard map may be utilized successfully for planning, management, and long-term development of the studied locations.


Doi: 10.28991/CEJ-2022-08-07-010

Full Text: PDF


Earthquake; Peak Ground Acceleration; Factor of Safety; Liquefaction Hazard Map.


Mahabub, M. S., Hossain, A. T. M. S., & Pahlowan, E. U. D. (2020). Assessment of Liquefaction Potential from Sirajganj to Kurigram Area, Bangladesh. IOSR Journal of Mechanical and Civil Engineering, 17(1), 31–43. doi:10.9790/1684-1701033143.

Morino, M., Maksud Kamal, A. S. M., Muslim, D., Ekram Ali, R. M., Kamal, M. A., Zillur Rahman, M., & Kaneko, F. (2011). Seismic event of the Dauki Fault in 16th century confirmed by trench investigation at Gabrakhari Village, Haluaghat, Mymensingh, Bangladesh. Journal of Asian Earth Sciences, 42(3), 492–498. doi:10.1016/j.jseaes.2011.05.002.

Morino, M., Kamal, A. S. M. M., Akhter, S. H., Rahman, M. Z., Ali, R. M. E., Talukder, A., … Kaneko, F. (2014). A paleo-seismological study of the Dauki fault at Jaflong, Sylhet, Bangladesh: Historical seismic events and an attempted rupture segmentation model. Journal of Asian Earth Sciences, 91, 218–226. doi:10.1016/j.jseaes.2014.06.002.

Steckler, M. S., Mondal, D. R., Akhter, SH., Seeber, L., Feng, L., Gale, J., Hill, E. M., & Howe, M. (2016). Locked and loading megathrust linked to active subduction beneath the Indo-Burman Ranges. Nature Geoscience, 9(8), 615–18. doi:10.1038/ngeo2760.

Adnan, M. S. G., Talchabhadel, R., Nakagawa, H., & Hall, J. W. (2020). The potential of tidal river management for flood alleviation in south western Bangladesh. Science of the Total Environment, 731, 138747. doi:10.1016/j.scitotenv.2020.138747.

Rahman, Z., & Siddiqua, S. (2016). Liquefaction resistance evaluation of soils using standard penetration test blow count and shear wave velocity. Proceedings of the 69th Canadian geotechnical society. Canadian Geotechnical Society, Vancouver, Canada.

Bilham, R., & England, P. (2001). Plateau “pop-up” in the great 1897 Assam earthquake. Nature, 410(6830), 806–809. doi:10.1038/35071057.

Hossain, B. (2021). Empirical Correlation between Shear Wave Velocity and Uncorrected Standard Penetration Resistance (SPT-N) for Dinajpur District, Bangladesh. Journal of Nature, Science & Technology, 1(3), 25–29. doi:10.36937/janset.2021.003.005.

Rahman, M. A., Ahmed, S., & Imam, M. O. (2020). Rational Way of Estimating Liquefaction Severity: An Implication for Chattogram, the Port City of Bangladesh. Geotechnical and Geological Engineering, 38(2), 2359–2375. doi:10.1007/s10706-019-01134-2.

Coduto, D. P. (1999). Geotechnical engineering: principles and practices. Pearson College Division, New York City, United States.

Papathanassiou, G., Seggis, K., & Pavlides, S. (2011). Evaluating earthquake-induced liquefaction in the urban area of Larissa, Greece. Bulletin of Engineering Geology and the Environment, 70(1), 79–88. doi:10.1007/s10064-010-0281-3.

Mihajlović, G., & Živković, M. (2020). Sieving Extremely Wet Earth Mass by Means of Oscillatory Transporting Platform. Emerging Science Journal, 4(3), 172–182. doi:10.28991/esj-2020-01221.

Peng, E., Hou, Z., Sheng, Y., Hu, X., Zhang, D., Song, L., & Chou, Y. (2021). Anti-liquefaction performance of partially saturated sand induced by biogas under high intensity vibration. Journal of Cleaner Production, 319, 128794. doi:10.1016/j.jclepro.2021.128794.

Seed, H. B., & Idriss, I. M. (1967). Analysis of Soil Liquefaction: Niigata Earthquake. In Journal of the Soil Mechanics and Foundations Division, 93(3), 83–108. doi:10.1061/jsfeaq.0000981.

Erdik, M. (2001). Report on 1999 Kocaeli and Duzce (Turkey) Earthquakes, Structural control for civil and infrastructure engineering. World Scientific, Singapore. doi:10.1142/9789812811707_0018.

Bray, J. D., & Sancio, R. B. (2006). Assessment of the Liquefaction Susceptibility of Fine-Grained Soils. Journal of Geotechnical and Geoenvironmental Engineering, 132(9), 1165–1177. doi:10.1061/(ASCE)1090-0241(2006)132:9(1165).

Ansary, M. A., & Rashid, M. A. (2000). Generation of liquefaction potential map for Dhaka, Bangladesh. 8th ASCE Specialty Conference on Probabilistic Mechanics and Structural Reliability, 24-26 July, 2000, University of Notre Dame, Notre Dame, Indiana, United States.

Islam, M. S., & Hossain, M. T. (2010). Earthquake Induced Liquefaction Potential of Reclaimed Areas of Dhaka City. GeoShanghai International Conference 2010. doi:10.1061/41102(375)40.

Mhaske, S. Y., & Choudhury, D. (2010). GIS-based soil liquefaction susceptibility map of Mumbai city for earthquake events. Journal of Applied Geophysics, 70(3), 216–225. doi:10.1016/j.jappgeo.2010.01.001.

Thoithoi, L., Ningthoujam, P. S., Singh, R. P., & Shukla, D. P. (2013). Liquefaction Study of Subsurface Soil in Part of Delhi University, North Campus. International Journal of Advancement in Earth and Environmental Science, 1(1), 14–22.

Hossain, M. S., Kamal, A. S. M. M., Rahman, M. Z., Farazi, A. H., Mondal, D. R., Mahmud, T., & Ferdous, N. (2020). Assessment of soil liquefaction potential: a case study for Moulvibazar town, Sylhet, Bangladesh. SN Applied Sciences, 2(4). doi:10.1007/s42452-020-2582-x.

Sengupta, S., & Kolathayar, S. (2020). Evaluation of liquefaction potential of soil at a power plant site in Chittagong, Bangladesh. International Journal of Geotechnical Earthquake Engineering, 11(1), 1–16. doi:10.4018/IJGEE.2020010101.

Wadi, D., Wu, W., Malik, I., Ahmed, H. A., & Makki, A. (2021). Assessment of liquefaction potential of soil based on standard penetration test for the upper Benue region in Nigeria. In Environmental Earth Sciences, 80(7), 1-11. doi:10.1007/s12665-021-09565-y.

Abdullah, G. M. S., & El Aal, A. A. (2021). Liquefaction hazards mapping along Rеd Sеa coast, Jеddah city, Kingdom of Saudi Arabia. Soil Dynamics and Earthquake Engineering, 144. doi:10.1016/j.soildyn.2021.106682.

Subedi, M., & Acharya, I. P. (2022). Liquefaction hazard assessment and ground failure probability analysis in the Kathmandu Valley of Nepal. Geoenvironmental Disasters, 9(1). doi:10.1186/s40677-021-00203-0.

Tint, Z. L., Kyaw, N. M., & Kyaw, K. (2018). Development of soil distribution and liquefaction potential maps for downtown area in Yangon, Myanmar. Civil Engineering Journal, 4(3), 689-701. doi:10.28991/cej-0309108.

Hossain, M. S., Xiao, W., Khan, M. S. H., Chowdhury, K. R., & Ao, S. (2020). Geodynamic model and tectono-structural framework of the Bengal Basin and its surroundings. Journal of Maps, 16(2), 445–458. doi:10.1080/17445647.2020.1770136

Hossain, M.S., Khan, M.S.H., Chowdhury, K.R., Abdullah, R. (2019). Synthesis of the Tectonic and Structural Elements of the Bengal Basin and Its Surroundings. Tectonics and Structural Geology: Indian Context. Springer Geology. Springer, Cham, Switzerland. doi:10.1007/978-3-319-99341-6_6.

Khan, M. S. H., Hossain, M. S., & Chowdhury, K. R. (2017). Geomorphic Implications and active tectonics of the Sitapahar Anticline–CTFB, Bangladesh. Bangladesh Geoscience Journal, 23, 1–24.

Curray, J.R., Emmel, F.J., Moore, D.G., Raitt, R.W. (1982). Structure, Tectonics, and Geological History of the Northeastern Indian Ocean. The Ocean Basins and Margins. Springer, Boston, United States. doi:10.1007/978-1-4615-8038-6_9.

Ambraseys, N. N., & Douglas, J. (2004). Magnitude calibration of north Indian earthquakes. Geophysical Journal International, 159(1), 165–206. doi:10.1111/j.1365-246X.2004.02323.x

Alam, M. K., Hasan, A. K. M., Khan, M. R., & Whitney, J. W. (1990). Geological Map of Bangladesh. Geological Survey of Bangladesh. US Geological Survey, Dhaka, Bangladesh.

Chang, M., Kuo, C. ping, Shau, S. hui, & Hsu, R. eeh. (2011). Comparison of SPT-N-based analysis methods in evaluation of liquefaction potential during the 1999 Chi-chi earthquake in Taiwan. Computers and Geotechnics, 38(3), 393–406. doi:10.1016/j.compgeo.2011.01.003.

Tokimatsu, K., & Yoshimi, Y. (1983). Empirical Correlation of Soil Liquefaction Based on SPT N-Value and Fines Content. Soils and Foundations, 23(4), 56–74. doi:10.3208/sandf1972.23.4_56

Seed, H.B, & Idriss, I.M. (1971). Simplified procedure for evaluating soil liquefaction potential. Journal of the Soil Mechanics and foundation Divisions, 97(9), 1249–1273. doi:10.1061/jsfeaq.0001662.

Idriss, I. M., & Boulanger, R. W. (2006). Semi-empirical procedures for evaluating liquefaction potential during earthquakes. Soil Dynamics and Earthquake Engineering, 26(2-4), 115–130. doi:10.1016/j.soildyn.2004.11.023

Youd, T. L., & Idriss, I. M. (1997). Proceeding of the NCEER workshop on evaluation of liquefaction resistance of soils. Report NCEER-97-0022, Brigham Young University, Provo, United States.

Rauch, A. F. (1997). An empirical method for predicting surface displacements due to liquefaction-induced lateral spreading in earthquakes. PhD Thesis, Virginia Tech, Blacksburg, United States.

Luna, R., & Frost, J. D. (1998). Spatial Liquefaction Analysis System. Journal of Computing in Civil Engineering, 12(1), 48–56. doi:10.1061/(asce)0887-3801(1998)12:1(48).

Iwasaki, T., Tokida, K. I., Tatsuoka, F., Watanabe, S., Yasuda, S., & Sato, H. (1982). Microzonation for soil liquefaction potential using simplified methods. Proceedings of the 3rd International Conference on Microzonation, 28 June-1 July, 1982, Seattle, United States.

Youd, T. L., & Idriss, I. M. (2001). Liquefaction Resistance of Soils: Summary Report from the 1996 NCEER and 1998 NCEER/NSF Workshops on Evaluation of Liquefaction Resistance of Soils. Journal of Geotechnical and Geoenvironment Engineering, 127(4), 297–313. doi:10.1061/(asce)1090-0241(2001)127:4(297).

Toprak, S., Holzer, T. L., Bennett, M. J., & Tinsley III, J. C. (1999). CPT-and SPT-based probabilistic assessment of liquefaction. 7th US–Japan Workshop on Earthquake Resistant Design of Lifeline Facilities and Countermeasures against Liquefaction, Multidisciplinary Center for Earthquake Engineering Research, 15-17 August, Seattle, United States.

Juang, C. H., Jiang, T., & Andrus, R. D. (2002). Assessing probability-based methods for liquefaction potential evaluation. Journal of Geotechnical and Geoenvironmental Engineering, 128(7), 580-589. doi:10.1061/(ASCE)1090-0241(2002)128:7(580).

Bolton Seed, H., Tokimatsu, K., Harder, L. F., & Chung, R. M. (1985). Influence of SPT procedures in soil liquefaction resistance evaluations. Journal of Geotechnical Engineering, 111(12), 1425–1445. doi:10.1061/(ASCE)0733-9410(1985)111:12(1425).

Juang, C. H., Ching, J., Luo, Z., & Ku, C. S. (2012). New models for probability of liquefaction using standard penetration tests based on an updated database of case histories. Engineering Geology, 133–134, 85–93. doi:10.1016/j.enggeo.2012.02.015.

Gowda, G. B., Dinesh, S. V., Govindaraju, L., & Babu, R. R. (2022). Effect of Liquefaction Induced Lateral Spreading on Seismic Performance of Pile Foundations. Civil Engineering Journal, 7, 58-70. doi:10.28991/CEJ-SP2021-07-05.

Boulanger, R. W., & Idriss, I. M. (2012). Probabilistic standard penetration test–based liquefaction–triggering procedure. Journal of Geotechnical and Geoenvironmental Engineering, 138(10), 1185-1195. doi:10.1061/(ASCE) GT.1943-5606.0000700.

Idriss, I. M., & Boulanger, R. W. (2010). Report on SPT-based liquefaction triggering procedures. Report number: UCD/CGM-10/02, Center for Geotechnical Modeling, Department of Civil and Environmental Engineering, University of California at Davis, Davis, United States.

Sharma, B., Siddique, A. F., Medhi, B. J., & Begum, N. (2018). Assessment of liquefaction potential of Guwahati city by probabilistic approaches. Innovative Infrastructure Solutions, 3(1), 1-12. doi:10.1007/s41062-017-0117-0.

Full Text: PDF

DOI: 10.28991/CEJ-2022-08-07-010


  • There are currently no refbacks.

Copyright (c) 2022 Md. Belal Hossain, Md Roknuzzaman, Md Mahabub Rahman

Creative Commons License
This work is licensed under a Creative Commons Attribution 4.0 International License.