Flow Characteristics through Granular Soil Influenced by Saline Water Intrusion: A Laboratory Investigation

Sudip Basack, Ghritartha Goswami, Hadi Khabbaz, Moses Karakouzian


The coastal geoenvironment initiates saline water intrusion into the freshwater aquifers, producing a geohydraulic problem. Such intrusion not only contaminates the fresh groundwater resources, making them unsuitable for human use, but also alters the hydraulic conductivity of the aquifer materials, which affects the coastal groundwater flow, influencing the water resources planning and management. Past investigations reveal that the groundwater flow can be linear or nonlinear depending upon the hydraulic gradient. Thus, the coefficients of nonlinear hydraulic conductivities are affected by saltwater intrusion. The present study focuses on an in-depth laboratory investigation into the influence of saltwater submergence on the nonlinear flow characteristics through granular soil. The fine sand samples have been submerged under saline water of specified concentrations for a specific duration, and the alteration in their nonlinear geohydraulic properties has been studied. It is observed that the flow characteristics through fine sand are significantly affected by the period of submergence and saline concentration. Appropriate analyses of the test results are performed to interpret the experimental data, and relevant conclusions are drawn therefrom. The novelty of this study is an in-depth analysis of nonlinear flow characterization affected by saline water intrusion.


Doi: 10.28991/CEJ-2022-08-05-02

Full Text: PDF


Hydraulic Conductivity; Saline Water Intrusion; Sand; Darcy Flow; Forchheimer Flow.


Fatahi, B., Khabbaz, S. H., & Basack, S. (2011). Effects of salinity and sand content on liquid limit and hydraulic conductivity. Australian Geomechanics Journal, 46(1), 67–76.

Hussain, M. S., Abd-Elhamid, H. F., Javadi, A. A., & Sherif, M. M. (2019). Management of Seawater Intrusion in Coastal Aquifers: A Review. Water, 11(12), 2467. doi:10.3390/w11122467.

Panthi, J., Pradhanang, S. M., Nolte, A., & Boving, T. B. (2022). Saltwater intrusion into coastal aquifers in the contiguous United States — a systematic review of investigation approaches and monitoring networks. Science of the Total Environment, 836, 155641. doi:10.1016/j.scitotenv.2022.155641

Reilly, T. E., & Goodman, A. S. (1987). Analysis of saltwater upconing beneath a pumping well. Journal of Hydrology, 89(3–4), 169–204. doi:10.1016/0022-1694(87)90179-X.

Bhattacharya, A. K., Basak, S., & Maity, P. (2004). Groundwater extraction in the United Arab Emirates under the constraint of saline water intrusion. Journal of Environmental Hydrology, 12(6), 1-5.

Basack, S., Bhattacharya, A. K., & Maity, P. (2014). A coastal groundwater management model with Indian case study. Proceedings of the Institution of Civil Engineers - Water Management, 167(3), 126–140. doi:10.1680/wama.12.00008.

Goswami, G., Basack, S., Mastorakis, N., Saikia, A., Nilo, B., & Ahmed, N. (2020). Coastal ground water flow and management: A state-of-the-art review. International Journal of Mechanics, 14, 37–48. doi:10.46300/9104.2020.14.5.

Basack, S., Goswami, G., Deka, P., Barman, M. K., & Chishi, K. (2020). Flow Characteristics through Saturated Soil: Experimental Study. Wseas Transactions on Environment and Development, 16, 198–203. doi:10.37394/232015.2020.16.20.

Kiron, B., Basack, S., Goswami, G., & Bida, H. (2021). Hydrological and Environmental Study on Surface Water Characterization in a Locality in North Eastern India. WSEAS Transactions on Environment and Development, 17, 1228–1233. doi:10.37394/232015.2021.17.112.

Dutta, J., Basack, S., Goswami, G., & Kiron, B. (2021). Geomechanical hazards related to river hydraulics and remedial measures: Selected case studies in india. WSEAS Transactions on Fluid Mechanics, 16, 214–221. doi:10.37394/232013.2021.16.20.

Basack, S., Goswami, G., Sonowal, S., & Karakouzian, M. (2021). Influence of Saltwater Submergence on Geohydraulic Properties of Sand: A Laboratory Investigation. Hydrology, 8(4), 181. doi:10.3390/hydrology8040181.

Bobba, A. G. (1993). Mathematical models for saltwater intrusion in coastal aquifers. Water Resources Management, 7(1), 3–37. doi:10.1007/BF00872240.

Haitjema, H., Kuzin, S., Kelson, V., & Abrams, D. (2010). Modeling Flow into Horizontal Wells in a Dupuit-Forchheimer Model. Ground Water, 48(6), 878–883. doi:10.1111/j.1745-6584.2010.00694.x.

Cai, J., Taute, T., & Schneider, M. (2014). Saltwater Upconing Below a Pumping Well in an Inland Aquifer: a Theoretical Modeling Study on Testing Different Scenarios of Deep Saline-Groundwater Pathways. Water, Air, & Soil Pollution, 225(11). doi:10.1007/s11270-014-2203-7.

Kim, D. G., Shin, K. H., & Kim, G. B. (2018). Suitability analysis of saline water intrusion monitoring wells near a waterway based on a numerical model and electric conductivity time series. Geosciences Journal, 22(5), 807–824. doi:10.1007/s12303-018-0001-8.

Akter, S., Ahmed, K. R., Marandi, A., & Schüth, C. (2020). Possible factors for increasing water salinity in an embanked coastal island in the southwest Bengal Delta of Bangladesh. Science of the Total Environment, 713(136668). doi:10.1016/j.scitotenv.2020.136668.

Goswami, R. R., & Clement, T. P. (2007). Laboratory-scale investigation of saltwater intrusion dynamics. Water Resources Research, 43(4). doi:10.1029/2006WR005151.

Basack, S., Bhattacharya, A. K., Sahana, C., & Maity, P. (2010). A study on saline water intrusion and fresh water recharge relevant to coastal environment. WSEAS Transactions on Fluid Mechanics, 5(3), 80–90.

Park, S. U., Kim, J. M., Yum, B. W., & Yeh, G. T. (2012). Three-Dimensional Numerical Simulation of Saltwater Extraction Schemes to Mitigate Seawater Intrusion due to Groundwater Pumping in a Coastal Aquifer System. Journal of Hydrologic Engineering, 17(1), 10–22. doi:10.1061/(asce)he.1943-5584.0000412.

Mehdizadeh, S. S., Vafaie, F., & Abolghasemi, H. (2015). Assessment of sharp-interface approach for saltwater intrusion prediction in an unconfined coastal aquifer exposed to pumping. Environmental Earth Sciences, 73(12), 8345–8355. doi:10.1007/s12665-014-3996-9.

Crestani, E., Camporese, M., & Salandin, P. (2019). An alternative approach to laboratory benchmarking of saltwater intrusion in coastal aquifers. Hydrology and Earth System Sciences Discussions, 1–18. doi:10.5194/hess-2019-127.

Guo, Q., Huang, J., Zhou, Z., & Wang, J. (2019). Experiment and numerical simulation of seawater intrusion under the influences of tidal fluctuation and groundwater exploitation in coastal multilayered aquifers. Geofluids, 2019, 1–17. doi:10.1155/2019/2316271.

Basack, S., Loganathan, M. K., Goswami, G., Baruah, P., & Alam, R. (2022). Review of Risk Assessment and Mitigation Measures of Coastal Aquifers Vulnerable to Saline Water Intrusion. Polish Journal of Environmental Studies, 31(2), 1505–1512. doi:10.15244/pjoes/142382.

Bhattacharya, A. K., & Basack, S. (2009). A Practical Design for Groundwater Extraction in Arid Regions Using Qanats Coupled with Vertical Risers. Electronic Journal of Geotechnical Engineering, 14, 1-8.

Mondal, I., Thakur, S., & Bandyopadhyay, J. (2020). Delineating lateral channel migration and risk zones of Ichamati River, West Bengal, India. Journal of Cleaner Production, 244, 118740. doi:10.1016/j.jclepro.2019.118740.

Lathashri, U. A., & Mahesha, A. (2016). Predictive Simulation of Seawater Intrusion in a Tropical Coastal Aquifer. Journal of Environmental Engineering, 142(12). doi:10.1061/(asce)ee.1943-7870.0001037.

Prasad, K. V. S. R., Sridevi, T., & Sadhuram, Y. (2018). Influence of Dam-Controlled River Discharge and Tides on Salinity Intrusion in the Godavari Estuary, East Coast of India. Journal of Waterway, Port, Coastal, and Ocean Engineering, 144(2), 04017049. doi:10.1061/(asce)ww.1943-5460.0000430.

Meyer, R., Engesgaard, P., & Sonnenborg, T. O. (2019). Origin and Dynamics of Saltwater Intrusion in a Regional Aquifer: Combining 3‐D Saltwater Modeling with Geophysical and Geochemical Data. Water Resources Research, 55(3), 1792–1813. doi:10.1029/2018wr023624.

Hasan, M., Shang, Y., Akhter, G., & Jin, W. (2019). Delineation of contaminated aquifers using integrated geophysical methods in Northeast Punjab, Pakistan. Environmental Monitoring and Assessment, 192(1). doi:10.1007/s10661-019-7941-y.

Michael, H. A., Post, V. E. A., Wilson, A. M., & Werner, A. D. (2017). Science, society, and the coastal groundwater squeeze. Water Resources Research, 53(4), 2610–2617. doi:10.1002/2017wr020851.

Thirumurugan, M., Elango, L., Senthilkumar, M., Sathish, S., & Kalpana, L. (2018). Groundwater Management in Alluvial, Coastal and Hilly Areas. Ground Water Development - Issues and Sustainable Solutions, 109–119. doi:10.1007/978-981-13-1771-2_6.

Vengadesan, M., & Lakshmanan, E. (2019). Management of coastal groundwater resources. Coastal Management, 383-397. Academic Press, Massachusetts, United States. doi:10.1016/B978-0-12-810473-6.00018-2.

Mostafaei-Avandari, M., & Ketabchi, H. (2020). Coastal Groundwater Management by an Uncertainty-Based Parallel Decision Model. Journal of Water Resources Planning and Management, 146(6), 04020036. doi:10.1061/(asce)wr.1943-5452.0001227.

Basack, S., Goswami, G., & Nimbalkar, S. (2021). Analytical and numerical solutions to selected research problems in geomechanics and geohydraulics. WSEAS Transactions on Applied and Theoretical Mechanics, 16, 222–231. doi:10.37394/232011.2021.16.25.

Abu zeid, M. M., & El-Aal, A. K. A. (2017). Effect of salinity of groundwater on the geotechnical properties of some Egyptian clay. Egyptian Journal of Petroleum, 26(3), 643–648. doi:10.1016/j.ejpe.2016.09.003.

Costall, A. R., Harris, B. D., Teo, B., Schaa, R., Wagner, F. M., & Pigois, J. P. (2020). Groundwater Throughflow and Seawater Intrusion in High Quality Coastal Aquifers. Scientific Reports, 10(1). doi:10.1038/s41598-020-66516-6.

Prusty, P., & Farooq, S. H. (2020). Seawater intrusion in the coastal aquifers of India - A review. HydroResearch, 3, 61–74. doi:10.1016/j.hydres.2020.06.001.

Moore, W. S., & Joye, S. B. (2021). Saltwater Intrusion and Submarine Groundwater Discharge: Acceleration of Biogeochemical Reactions in Changing Coastal Aquifers. Frontiers in Earth Science, 9. doi:10.3389/feart.2021.600710.

Crestani, E., Camporese, M., Belluco, E., Bouchedda, A., Gloaguen, E., & Salandin, P. (2022). Large-Scale Physical Modeling of Salt-Water Intrusion. Water, 14(8), 1183. doi:10.3390/w14081183.

Wang, L., Li, Y., Zhao, G., Chen, N., & Xu, Y. (2019). Experimental Investigation of Flow Characteristics in Porous Media at Low Reynolds Numbers (Re→0) under Different Constant Hydraulic Heads. Water, 11(11), 2317. doi:10.3390/w11112317. doi:10.3390/w11112317.

Darcy, H. (1856). Publiquis de la Ville de Dijon. Librainie des Corps Imperiaux des Ponts et Chaussess et des Mines, Paris, France. (In France).

Forchheimer, P. (1901). Water movement through the ground. Z. Ver. German, Ing., 45, 1782-1788. (In German).

United States Department of Agriculture (USDA). (1987). Soil Mechanics Level I-Module 3: USDA Textural Classification Study Guide. Soil Conservation Service, United States Department of Agriculture, Washington, United States. Available online: https://www.nrcs.usda.gov/Internet/FSE_DOCUMENTS/stelprdb1044818.pdf (accessed on February 2022).

Swenson, H. A., & Baldwin, H. L. (1965). A primer on water quality. US Department of the Interior, Geological Survey, Reston, United States.

Goswami G. (2019). A laboratory study on the influence of saltwater intrusion on sand relevant to coastal environment. Master Thesis, Department of Civil Engineering, Kaziranga University, Jorhat, Assam, India.

ASTM d854-00. (2000). Standard Test methods for specific gravity of soil solids by water pycnometer. ATM International, Pennsylvania, United States.

ASTM STP523-EB. (1973). Evaluation of Relative Density and its Role in Geotechnical Projects Involving Cohesionless Soils. ATM International, Pennsylvania, United States. doi:10.1520/STP523-EB.

Lunne, T., Knudsen, S., Blaker, Vestgården, T., Powell, J. J. M., Wallace, C. F., Krogh, L., Thomsen, N. V., Yetginer, G., & Ghanekar, R. K. (2019). Methods used to determine maximum and minimum dry unit weights of sand: Is there a need for a new standard? Canadian Geotechnical Journal, 56(4), 536–553. doi:10.1139/cgj-2017-0738.

ASTM D3080/D3080M-11. (2011). Standard Test Method for Direct Shear Test of Soils under Consolidated Drained Conditions. ATM International, Pennsylvania, United States.

ASTM D5084-16a. (2016). Standard Test Methods for Measurement of Hydraulic Conductivity of Saturated Porous Materials Using a Flexible Wall Permeameter. ATM International, Pennsylvania, United States. doi:10.1520/D5084-16A.

Tchistiakov, A. a. (1999). Effect of flow rate and salinity on sandstone permeability. Proceedings of Geothermal Conference Basel, Switzerland, 28-30 Sept 1999, 2, 189–197.

Sparks, D. L. (2003). The Chemistry of Saline and Sodic Soils. Environmental Soil Chemistry (2nd Ed.), Elsevier Science, Amsterdam, Netherlands. 285–300. doi:10.1016/b978-012656446-4/50010-4.

Abderrahmane, B., Naima, B., Tarek, M., & Abdelghani, M. (2021). Influence of Highway Traffic on Contamination of Roadside Soil with Heavy Metals. Civil Engineering Journal, 7(8), 1459–1471. doi:10.28991/cej-2021-03091736

Basack, S., Loganathan, M. K., Goswami, G., & Khabbaz, H. (2022). Saltwater Intrusion into Coastal Aquifers and Associated Risk Management: Critical Review and Research Directives. Journal of Coastal Research, 38(3). doi:10.2112/jcoastres-d-21-00116.1.

Hoque, M. A., Burgess, W. G., & Ahmed, K. M. (2017). Integration of aquifer geology, groundwater flow and arsenic distribution in deltaic aquifers – A unifying concept. Hydrological Processes, 31(11), 2095–2109. doi:10.1002/hyp.11181.

Full Text: PDF

DOI: 10.28991/CEJ-2022-08-05-02


  • There are currently no refbacks.

Copyright (c) 2022 SUDIP BASACK

Creative Commons License
This work is licensed under a Creative Commons Attribution 4.0 International License.