Flow Characteristics through Granular Soil Influenced by Saline Water Intrusion: A Laboratory Investigation
Downloads
Doi: 10.28991/CEJ-2022-08-05-02
Full Text: PDF
Downloads
[2] Hussain, M. S., Abd-Elhamid, H. F., Javadi, A. A., & Sherif, M. M. (2019). Management of Seawater Intrusion in Coastal Aquifers: A Review. Water, 11(12), 2467. doi:10.3390/w11122467.
[3] Panthi, J., Pradhanang, S. M., Nolte, A., & Boving, T. B. (2022). Saltwater intrusion into coastal aquifers in the contiguous United States ” a systematic review of investigation approaches and monitoring networks. Science of the Total Environment, 836, 155641. doi:10.1016/j.scitotenv.2022.155641
[4] Reilly, T. E., & Goodman, A. S. (1987). Analysis of saltwater upconing beneath a pumping well. Journal of Hydrology, 89(3–4), 169–204. doi:10.1016/0022-1694(87)90179-X.
[5] Bhattacharya, A. K., Basak, S., & Maity, P. (2004). Groundwater extraction in the United Arab Emirates under the constraint of saline water intrusion. Journal of Environmental Hydrology, 12(6), 1-5.
[6] Basack, S., Bhattacharya, A. K., & Maity, P. (2014). A coastal groundwater management model with Indian case study. Proceedings of the Institution of Civil Engineers - Water Management, 167(3), 126–140. doi:10.1680/wama.12.00008.
[7] Goswami, G., Basack, S., Mastorakis, N., Saikia, A., Nilo, B., & Ahmed, N. (2020). Coastal ground water flow and management: A state-of-the-art review. International Journal of Mechanics, 14, 37–48. doi:10.46300/9104.2020.14.5.
[8] Basack, S., Goswami, G., Deka, P., Barman, M. K., & Chishi, K. (2020). Flow Characteristics through Saturated Soil: Experimental Study. Wseas Transactions on Environment and Development, 16, 198–203. doi:10.37394/232015.2020.16.20.
[9] Kiron, B., Basack, S., Goswami, G., & Bida, H. (2021). Hydrological and Environmental Study on Surface Water Characterization in a Locality in North Eastern India. WSEAS Transactions on Environment and Development, 17, 1228–1233. doi:10.37394/232015.2021.17.112.
[10] Dutta, J., Basack, S., Goswami, G., & Kiron, B. (2021). Geomechanical hazards related to river hydraulics and remedial measures: Selected case studies in india. WSEAS Transactions on Fluid Mechanics, 16, 214–221. doi:10.37394/232013.2021.16.20.
[11] Basack, S., Goswami, G., Sonowal, S., & Karakouzian, M. (2021). Influence of Saltwater Submergence on Geohydraulic Properties of Sand: A Laboratory Investigation. Hydrology, 8(4), 181. doi:10.3390/hydrology8040181.
[12] Bobba, A. G. (1993). Mathematical models for saltwater intrusion in coastal aquifers. Water Resources Management, 7(1), 3–37. doi:10.1007/BF00872240.
[13] Haitjema, H., Kuzin, S., Kelson, V., & Abrams, D. (2010). Modeling Flow into Horizontal Wells in a Dupuit-Forchheimer Model. Ground Water, 48(6), 878–883. doi:10.1111/j.1745-6584.2010.00694.x.
[14] Cai, J., Taute, T., & Schneider, M. (2014). Saltwater Upconing Below a Pumping Well in an Inland Aquifer: a Theoretical Modeling Study on Testing Different Scenarios of Deep Saline-Groundwater Pathways. Water, Air, & Soil Pollution, 225(11). doi:10.1007/s11270-014-2203-7.
[15] Kim, D. G., Shin, K. H., & Kim, G. B. (2018). Suitability analysis of saline water intrusion monitoring wells near a waterway based on a numerical model and electric conductivity time series. Geosciences Journal, 22(5), 807–824. doi:10.1007/s12303-018-0001-8.
[16] Akter, S., Ahmed, K. R., Marandi, A., & Schüth, C. (2020). Possible factors for increasing water salinity in an embanked coastal island in the southwest Bengal Delta of Bangladesh. Science of the Total Environment, 713(136668). doi:10.1016/j.scitotenv.2020.136668.
[17] Goswami, R. R., & Clement, T. P. (2007). Laboratory-scale investigation of saltwater intrusion dynamics. Water Resources Research, 43(4). doi:10.1029/2006WR005151.
[18] Basack, S., Bhattacharya, A. K., Sahana, C., & Maity, P. (2010). A study on saline water intrusion and fresh water recharge relevant to coastal environment. WSEAS Transactions on Fluid Mechanics, 5(3), 80–90.
[19] Park, S. U., Kim, J. M., Yum, B. W., & Yeh, G. T. (2012). Three-Dimensional Numerical Simulation of Saltwater Extraction Schemes to Mitigate Seawater Intrusion due to Groundwater Pumping in a Coastal Aquifer System. Journal of Hydrologic Engineering, 17(1), 10–22. doi:10.1061/(asce)he.1943-5584.0000412.
[20] Mehdizadeh, S. S., Vafaie, F., & Abolghasemi, H. (2015). Assessment of sharp-interface approach for saltwater intrusion prediction in an unconfined coastal aquifer exposed to pumping. Environmental Earth Sciences, 73(12), 8345–8355. doi:10.1007/s12665-014-3996-9.
[21] Crestani, E., Camporese, M., & Salandin, P. (2019). An alternative approach to laboratory benchmarking of saltwater intrusion in coastal aquifers. Hydrology and Earth System Sciences Discussions, 1–18. doi:10.5194/hess-2019-127.
[22] Guo, Q., Huang, J., Zhou, Z., & Wang, J. (2019). Experiment and numerical simulation of seawater intrusion under the influences of tidal fluctuation and groundwater exploitation in coastal multilayered aquifers. Geofluids, 2019, 1–17. doi:10.1155/2019/2316271.
[23] Basack, S., Loganathan, M. K., Goswami, G., Baruah, P., & Alam, R. (2022). Review of Risk Assessment and Mitigation Measures of Coastal Aquifers Vulnerable to Saline Water Intrusion. Polish Journal of Environmental Studies, 31(2), 1505–1512. doi:10.15244/pjoes/142382.
[24] Bhattacharya, A. K., & Basack, S. (2009). A Practical Design for Groundwater Extraction in Arid Regions Using Qanats Coupled with Vertical Risers. Electronic Journal of Geotechnical Engineering, 14, 1-8.
[25] Mondal, I., Thakur, S., & Bandyopadhyay, J. (2020). Delineating lateral channel migration and risk zones of Ichamati River, West Bengal, India. Journal of Cleaner Production, 244, 118740. doi:10.1016/j.jclepro.2019.118740.
[26] Lathashri, U. A., & Mahesha, A. (2016). Predictive Simulation of Seawater Intrusion in a Tropical Coastal Aquifer. Journal of Environmental Engineering, 142(12). doi:10.1061/(asce)ee.1943-7870.0001037.
[27] Prasad, K. V. S. R., Sridevi, T., & Sadhuram, Y. (2018). Influence of Dam-Controlled River Discharge and Tides on Salinity Intrusion in the Godavari Estuary, East Coast of India. Journal of Waterway, Port, Coastal, and Ocean Engineering, 144(2), 04017049. doi:10.1061/(asce)ww.1943-5460.0000430.
[28] Meyer, R., Engesgaard, P., & Sonnenborg, T. O. (2019). Origin and Dynamics of Saltwater Intrusion in a Regional Aquifer: Combining 3"D Saltwater Modeling with Geophysical and Geochemical Data. Water Resources Research, 55(3), 1792–1813. doi:10.1029/2018wr023624.
[29] Hasan, M., Shang, Y., Akhter, G., & Jin, W. (2019). Delineation of contaminated aquifers using integrated geophysical methods in Northeast Punjab, Pakistan. Environmental Monitoring and Assessment, 192(1). doi:10.1007/s10661-019-7941-y.
[30] Michael, H. A., Post, V. E. A., Wilson, A. M., & Werner, A. D. (2017). Science, society, and the coastal groundwater squeeze. Water Resources Research, 53(4), 2610–2617. doi:10.1002/2017wr020851.
[31] Thirumurugan, M., Elango, L., Senthilkumar, M., Sathish, S., & Kalpana, L. (2018). Groundwater Management in Alluvial, Coastal and Hilly Areas. Ground Water Development - Issues and Sustainable Solutions, 109–119. doi:10.1007/978-981-13-1771-2_6.
[32] Vengadesan, M., & Lakshmanan, E. (2019). Management of coastal groundwater resources. Coastal Management, 383-397. Academic Press, Massachusetts, United States. doi:10.1016/B978-0-12-810473-6.00018-2.
[33] Mostafaei-Avandari, M., & Ketabchi, H. (2020). Coastal Groundwater Management by an Uncertainty-Based Parallel Decision Model. Journal of Water Resources Planning and Management, 146(6), 04020036. doi:10.1061/(asce)wr.1943-5452.0001227.
[34] Basack, S., Goswami, G., & Nimbalkar, S. (2021). Analytical and numerical solutions to selected research problems in geomechanics and geohydraulics. WSEAS Transactions on Applied and Theoretical Mechanics, 16, 222–231. doi:10.37394/232011.2021.16.25.
[35] Abu zeid, M. M., & El-Aal, A. K. A. (2017). Effect of salinity of groundwater on the geotechnical properties of some Egyptian clay. Egyptian Journal of Petroleum, 26(3), 643–648. doi:10.1016/j.ejpe.2016.09.003.
[36] Costall, A. R., Harris, B. D., Teo, B., Schaa, R., Wagner, F. M., & Pigois, J. P. (2020). Groundwater Throughflow and Seawater Intrusion in High Quality Coastal Aquifers. Scientific Reports, 10(1). doi:10.1038/s41598-020-66516-6.
[37] Prusty, P., & Farooq, S. H. (2020). Seawater intrusion in the coastal aquifers of India - A review. HydroResearch, 3, 61–74. doi:10.1016/j.hydres.2020.06.001.
[38] Moore, W. S., & Joye, S. B. (2021). Saltwater Intrusion and Submarine Groundwater Discharge: Acceleration of Biogeochemical Reactions in Changing Coastal Aquifers. Frontiers in Earth Science, 9. doi:10.3389/feart.2021.600710.
[39] Crestani, E., Camporese, M., Belluco, E., Bouchedda, A., Gloaguen, E., & Salandin, P. (2022). Large-Scale Physical Modeling of Salt-Water Intrusion. Water, 14(8), 1183. doi:10.3390/w14081183.
[40] Wang, L., Li, Y., Zhao, G., Chen, N., & Xu, Y. (2019). Experimental Investigation of Flow Characteristics in Porous Media at Low Reynolds Numbers (Re→0) under Different Constant Hydraulic Heads. Water, 11(11), 2317. doi:10.3390/w11112317. doi:10.3390/w11112317.
[41] Darcy, H. (1856). Publiquis de la Ville de Dijon. Librainie des Corps Imperiaux des Ponts et Chaussess et des Mines, Paris, France. (In France).
[42] Forchheimer, P. (1901). Water movement through the ground. Z. Ver. German, Ing., 45, 1782-1788. (In German).
[43] United States Department of Agriculture (USDA). (1987). Soil Mechanics Level I-Module 3: USDA Textural Classification Study Guide. Soil Conservation Service, United States Department of Agriculture, Washington, United States. Available online: https://www.nrcs.usda.gov/Internet/FSE_DOCUMENTS/stelprdb1044818.pdf (accessed on February 2022).
[44] Swenson, H. A., & Baldwin, H. L. (1965). A primer on water quality. US Department of the Interior, Geological Survey, Reston, United States.
[45] Goswami G. (2019). A laboratory study on the influence of saltwater intrusion on sand relevant to coastal environment. Master Thesis, Department of Civil Engineering, Kaziranga University, Jorhat, Assam, India.
[46] ASTM d854-00. (2000). Standard Test methods for specific gravity of soil solids by water pycnometer. ATM International, Pennsylvania, United States.
[47] ASTM STP523-EB. (1973). Evaluation of Relative Density and its Role in Geotechnical Projects Involving Cohesionless Soils. ATM International, Pennsylvania, United States. doi:10.1520/STP523-EB.
[48] Lunne, T., Knudsen, S., Blaker, Vestgården, T., Powell, J. J. M., Wallace, C. F., Krogh, L., Thomsen, N. V., Yetginer, G., & Ghanekar, R. K. (2019). Methods used to determine maximum and minimum dry unit weights of sand: Is there a need for a new standard? Canadian Geotechnical Journal, 56(4), 536–553. doi:10.1139/cgj-2017-0738.
[49] ASTM D3080/D3080M-11. (2011). Standard Test Method for Direct Shear Test of Soils under Consolidated Drained Conditions. ATM International, Pennsylvania, United States.
[50] ASTM D5084-16a. (2016). Standard Test Methods for Measurement of Hydraulic Conductivity of Saturated Porous Materials Using a Flexible Wall Permeameter. ATM International, Pennsylvania, United States. doi:10.1520/D5084-16A.
[51] Tchistiakov, A. a. (1999). Effect of flow rate and salinity on sandstone permeability. Proceedings of Geothermal Conference Basel, Switzerland, 28-30 Sept 1999, 2, 189–197.
[52] Sparks, D. L. (2003). The Chemistry of Saline and Sodic Soils. Environmental Soil Chemistry (2nd Ed.), Elsevier Science, Amsterdam, Netherlands. 285–300. doi:10.1016/b978-012656446-4/50010-4.
[53] Abderrahmane, B., Naima, B., Tarek, M., & Abdelghani, M. (2021). Influence of Highway Traffic on Contamination of Roadside Soil with Heavy Metals. Civil Engineering Journal, 7(8), 1459–1471. doi:10.28991/cej-2021-03091736
[54] Basack, S., Loganathan, M. K., Goswami, G., & Khabbaz, H. (2022). Saltwater Intrusion into Coastal Aquifers and Associated Risk Management: Critical Review and Research Directives. Journal of Coastal Research, 38(3). doi:10.2112/jcoastres-d-21-00116.1.
[55] Hoque, M. A., Burgess, W. G., & Ahmed, K. M. (2017). Integration of aquifer geology, groundwater flow and arsenic distribution in deltaic aquifers – A unifying concept. Hydrological Processes, 31(11), 2095–2109. doi:10.1002/hyp.11181.
- Authors retain all copyrights. It is noticeable that authors will not be forced to sign any copyright transfer agreements.
- This work (including HTML and PDF Files) is licensed under a Creative Commons Attribution 4.0 International License.