Behavior of Reinforced Concrete Deep Beams with Openings under Vertical Loads Using Strut and Tie Model

Rasha T. S. Mabrouk, Mahmoud A. S. Mahmoud, Magdy E. Kassem


This research aims to study the effects of the size and location of openings on deep beams. The analysis of deep beams with openings presents a rather complex problem for engineers, as there are currently no guidelines within the design codes for this problem. Using the strut and tie model is a feasible solution, but also gives some uncertainties due to the various models that can be used. This paper proposes using a strut and tie model for the deep beams with openings where reinforcement is laid out in the form of embedded struts and ties. The study is divided into an experimental and a numerical part. The experimental study was conducted on eight reinforced concrete deep beams under vertical loads. Seven of the beams had web openings of different sizes and locations, while the eighth specimen was a reference beam without any openings. The beams had the same concrete dimensions with the size of the openings in the web taken as 150 150 mm and 300 300 mm, and the location of the opening in the horizontal direction was varied between 0.11 to 0.4 the span. The experimental results were analyzed in terms of cracking pattern, mode of failure, and load-deflection behavior and then compared to numerical analysis conducted using a finite element program. A parametric study followed to investigate the influence of reinforcement arrangement and reinforcement around the openings on the behavior of deep beams. The results showed that large web openings that directly interrupted the compression strut had the most reduction in beam capacity and that the location of the opening did not significantly affect the strength of the beam in the case of small openings.


Doi: 10.28991/CEJ-SP2021-07-011

Full Text: PDF


Deep Beam; Strut and Tie Model; Finite Element Analysis; Web Opening; Strut Reinforcement.


ACI 318-19. (2019). Building Code Requirements for Structural Concrete (ACI 318-19) and Commentary (ACI 318R-19). American Concrete Institute (ACI), Farmington Hills, United States. doi:10.14359/51716937.

ECP 203-2007. (2007). Egyptian Code for the Design and Construction of concrete Structures, Housing and Building Research Centre, Ministry of Housing, Utilities and Urban Communities, Cairo, Egypt.

Wight J. K., & MacGregor J. G. (2011). Reinforced Concrete Mechanics and Design (6th Ed.). Pearson Prentice Hall, Hoboken, United States.

EN 1992-1-1. (2004). Eurocode 2: Design of Concrete Structures, Part 1-1: General Rules and Rules for Buildings. European Committee for Standardization, Brussels, Belgium.

The international Federation for Structural Concrete (fib). (2013). fib Model Code for Concrete Structures 2010. John Wiley & Sons, New Jersey, United States.

CSA A23.3:19. (2019). Design of Concrete Structures, Standards Council of Canada, Ottawa, Canada.

Tan, K. H., Dong, F. K., & Weng, L. W. (1998). High-strength reinforced concrete deep and short beams: shear design equations in North American and UK practice. Structural Journal, 95(3), 318-329. doi:10.14359/549.

Hwang, S. J., Lu, W. Y., & Lee, H. J. (2000). Shear strength prediction for deep beams. Structural Journal, 97(3), 367-376. doi:10.14359/9624.

Salami, M. R., Kobayashi H., & Unjoh, S. h. (2005). Experimental and Analytical Study on RC Deep Beams. Asian Journal of Civil Engineering (Building and Housing), 6(5), 409-421.

Dalaf, A. N., & Mohammed, S. D. (2021). Steel Fiber Enhancement upon Punching Shear Strength of Concrete Flat Plates Exposed to Fire Flame. Civil Engineering Journal, 7(10), 1667–1678. doi:10.28991/cej-2021-03091751.

Quintero-Febres, C. G., Parra-Montesinos, G., & Wight, J. K. (2006). Strength of struts in deep concrete members designed using strut-and-tie method. ACI Structural Journal, 103(4), 577–586. doi:10.14359/16434.

Kondalraj, R., & Appa Rao, G. (2021). Experimental verification of ACI 318 strut-and-tie method for design of deep beams without web reinforcement. ACI Structural Journal, 118(1), 139–152. doi:10.14359/51728083.

El-Zoughiby, M. (2021). Load-Spread Spectrum in Strut-and-Tie Modeling of Structural Concrete. ACI Structural Journal, 118(4), 3–15. doi:10.14359/51732639.

Hwang, S. J., Yang, Y. H., & Li, Y. A. (2021). Maximum shear strength of reinforced concrete deep beams. ACI Structural Journal, 118(6), 155–164. doi:10.14359/51733076.

Lee, J. Y., & Kang, Y. M. (2021). Strut-and-tie model without discontinuity for reinforced concrete deep beams. ACI Structural Journal, 118(5), 123–134. doi:10.14359/51732824.

Kong, F. K., & Sharp, G. R. (1977). Structural idealization for deep beams with web openings. Magazine of Concrete Research, 29(99), 81-91. doi:10.1680/macr.1977.29.99.81.

Kong, F. K., Sharp, G. R., Appleton, S. C., Beaumont, C. J., & Kubik, L. A. (1978). Structural idealization for deep beams with web openings: further evidence. Magazine of Concrete Research, 30(103), 89-95. doi:10.1680/macr.1978.30.103.89.

Almeida, A. P., & De Oliveira Pinto, N. (1999). High-strength concrete deep beams with web openings. American Concrete Institute, ACI Special Publication, SP186, 597–613. doi:10.14359/5580.

Maxwell, B. S., & Breen, J. E. (2000). Experimental evaluation of strut-and-tie model applied to deep beam with opening. Structural Journal, 97(1), 142-148. doi:10.14359/843.

Eun, H. C., Lee, Y. H., Chung, H. S., & Yang, K. H. (2006). On the shear strength of reinforced concrete deep beam with web opening. Structural Design of Tall and Special Buildings, 15(4), 445–466. doi:10.1002/tal.306.

Mau, S. T., & Hsu, T. T. (1987). Shear strength prediction for deep beams with web reinforcement. Structural Journal, 84(6), 513-523. doi:10.14359/2739.

Ley, M. T., Riding, K. A., Bae, S., & Breen, J. E. (2007). Experimental verification of strut-and-tie model design method. ACI Structural Journal, 104(6), 749-755. doi:10.14359/18957.

Garber, D. B., Gallardo, J. M., Huaco, G. D., Samaras, V. A., & Breen, J. E. (2014). Experimental evaluation of strut-and-tie model of indeterminate deep beam. ACI Structural Journal, 111(4), 873–880. doi:10.14359/51686738.

Brena, S. F., & Morrison, M. C. (2007). Factors affecting strength of elements designed using strut-and-tie models. ACI Structural Journal, 104(3), 267. doi:10.14359/18616.

Zhou, M., Zhong, J. T., Wang, L., & Chen, H. T. (2021). Application of evaluation system for strut-and-tie models of reinforced concrete structures. ACI Structural Journal, 118(1), 17–30. doi:10.14359/51728088.

Vaquero, S. F., & Bertero, R. D. (2020). Automatic generation of proper strut-and-tie model. ACI Structural Journal, 117(6), 81–92. doi:10.14359/51725905.

El-Zoughiby, M. E. (2021). Z-Shaped Load Path: A Unifying Approach to Developing Strut-and-Tie Models. ACI Structural Journal, 118(3), 35-48. doi:10.14359/51730535.

Tan, K. H., Tong, K., & Tang, C. Y. (2003). Consistent strut-and-tie modelling of deep beams with web openings. Magazine of Concrete Research, 55(1), 65–75. doi:10.1680/macr.2003.55.1.65.

Ashour, A. F., & Rishi, G. (2000). Tests of reinforced concrete continuous deep beams with web openings. Structural Journal, 97(3), 418-426. doi:10.14359/4636.

Campione, G., & Minafò, G. (2012). Behaviour of concrete deep beams with openings and low shear span-to-depth ratio. Engineering Structures, 41, 294–306. doi:10.1016/j.engstruct.2012.03.055.

Frappier, J., Mohamed, K., Farghaly, A. S., & Benmokrane, B. (2019). Behavior and strength of glass fiber-reinforced polymer-reinforced concrete deep beams with web openings. ACI Structural Journal, 116(5), 275–286. doi:10.14359/51716774.

Yang, K. H., Chung, H. S., & Ashour, A. F. (2007). Influence of inclined web reinforcement on reinforced concrete deep beams with openings. ACI Structural Journal, 104(5), 580–589. doi:10.14359/18860.

Yang, K. H., & Ashour, A. F. (2008). Effectiveness of web reinforcement around openings in continuous concrete deep beams. ACI Structural Journal, 105(4), 414–424. doi:10.14359/19855.

Jasim, W. A., Allawi, A. A., & Ali Oukaili, N. K. (2019). Effect of Size and Location of Square Web Openings on the Entire Behavior of Reinforced Concrete Deep Beams. Civil Engineering Journal, 5(1), 209. doi:10.28991/cej-2019-03091239.

Starčev-Ćurčin, A., Rašeta, A., Malešev, M., Kukaras, D., Radonjanin, V., Šešlija, M., & Žarković, D. (2020). Experimental Testing of Reinforced Concrete Deep Beams Designed by Strut-And-Tie Method. Applied Sciences, 10(18), 6217. doi:10.3390/APP10186217.

Ibrahim, M. A., El Thakeb, A., Mostfa, A. A., & Kottb, H. A. (2018). Proposed formula for design of deep beams with shear openings. HBRC Journal, 14(3), 450–465. doi:10.1016/j.hbrcj.2018.06.001.

Tseng, C. C., Hwang, S. J., & Lu, W. Y. (2017). Shear strength prediction of reinforced concrete deep beams with web openings. ACI Structural Journal, 114(6), 1569–1579. doi:10.14359/51700950.

Lafta, Y. J., & Ye, K. (2016). Specification of deep beams affect the shear strength capacity. Civil and Environmental Research, 8(2), 56–68.

ANSYS Theory Reference Release 5.6. (1999). ANSYS, Inc., Pennsylvania, United States.

Kachlakev, D., Miller, T. R., Yim, S., Chansawat, K., & Potisuk, T. (2001). Finite element modeling of concrete structures strengthened with FRP laminates. Technical report, FHWA-OR-RD-01-17. Oregon Department of Transportation: Research Section, Salem, United States.

Desayi, P., & Krishnan, S. (1964). Equation for the Stress-Strain Curve of Concrete. Journal Proceedings, 61(3), 345–350. doi:10.14359/7785.

Fanning, P. (2001). Nonlinear models of reinforced and post-tensioned concrete beams. Electronic Journal of Structural Engineering, 1(2), 111–119.

Tavarez, F.A., (2001). Simulation of Behavior of Composite Grid Reinforced Concrete Beams Using Explicit Finite Element Methods. Master’s Thesis, University of Wisconsin-Madison, Madison, United States.

Full Text: PDF

DOI: 10.28991/CEJ-SP2021-07-011


  • There are currently no refbacks.

Copyright (c) 2021 Rasha Mabrouk, Mahmoud Mahmoud, Magdy Kassem

Creative Commons License
This work is licensed under a Creative Commons Attribution 4.0 International License.