Engineering and Durability Properties of Modified Coconut Shell Concrete

Trokon Cooper Herring, Joseph N. Thuo, Timothy Nyomboi


Making low-cost concrete from coconut shell ash and coconut shell aggregate increases sustainability and reduces pollution. This research investigates untreated Coconut Shell Particles (CSP) incorporated with coconut shell ash (CSA) to improve the durability properties at elevated temperatures and in sulphuric acid. Initially, the physical and mechanical properties of cube and cylinder specimens after 7, 28, 56, and 90 days of moist curing were studied. The durability properties were then carried out after the pozzolanic component of CSA in modified concrete was activated. CSA and CSP were used as partial substitutes for ordinary Portland cement and coarse aggregate in class 30 concrete with a constant water to cement ratio of 0.55. Concrete mixes included control, 5% CSP, 10% CSA, and a mixture of 5% CSP incorporated with 10% CSA. According to test results, adding 10% of CSA to CSP concrete decreased the workability, density, and water absorption properties compared to the rest of the concrete mixes. However, these results were within acceptable limits. The compressive strength of 10% CSA concrete at 90 days of moist curing was reduced by 3.23% when 5% CSP was added compared to control. The addition of 10% of CSA to 5% CSP concrete improved the split tensile strength by 2.76% higher than concrete with only 5% CSP. Concrete containing the combination of 10% CSA and 5% CSP showed a 9.37% increment in the split tensile strength compared to concrete having only 5% CSP after sulphuric acid exposure. Also, the compressive strength of 10% CSA and 5% CSP concrete improved by 30.7% when the temperature was elevated to 500 °C for 1 hour compared to the control concrete. Moreover, the reduction in the compressive strength after exposure to the elevated temperature of 500 °C for 1 hr. was still much less by an average of 75.38% compared to other waste materials blended into the concrete by previous works.


Doi: 10.28991/CEJ-2022-08-02-013

Full Text: PDF


Control Concrete; Coconut Shell Particles; Coconut Shell Ash; Compressive Strength; Split Tensile Strength.


Tan, Y. Y., Doh, S. I., & Chin, S. C. (2018). Eggshell as a partial cement replacement in concrete development. Magazine of Concrete Research, 70(13), 662–670. doi:10.1680/jmacr.17.00003.

Patel, A. J., Patel, V. M., & Patel, M. A. (2015). Review on partial replacement of cement in concrete. UKIERI concrete congress–concrete research driving profit and sustainability, Vol. 1, No. 7, pp. 831-837, Punjab, India.

Azeez, S., Raju, R., & Pillai, P. S. (2015). Partial Replacement of Fine Aggregate & Cement in Concrete with Ceramic Rejects. International Journal of Engineering Trends and Technology, 28(5), 243–247. doi:10.14445/22315381/ijett-v28p247.

McCarthy, M. J., & Dyer, T. D. (2019). Pozzolanas and pozzolanic materials. Lea’s Chemistry of Cement and Concrete (pp. 363–467). doi:10.1016/B978-0-08-100773-0.00009-5.

Shraddhu, S. (2021). Types of Pozzolanic Materials /Admixtures/Concrete Technology. Engineering Note. Available online: (accessed on November 2021).

Sargent, P. (2015). The development of alkali-activated mixtures for soil stabilisation. In Handbook of Alkali-Activated Cements, Mortars and Concretes (pp. 555–604). Woodhead, Cambridge, United Kingdom. doi:10.1533/9781782422884.4.555.

Bergado, D. T., Anderson, L. R., Miura, N., & Balasubramaniam, A. S. (1996). Soft ground improvement in lowland and other environments. American Society of Civil Engineers (ASCE), Virginia, United States.

Bassuoni, M. T., & Nehdi, M. L. (2007). Resistance of self-consolidating concrete to sulfuric acid attack with consecutive pH reduction. Cement and Concrete Research, 37(7), 1070–1084. doi:10.1016/j.cemconres.2007.04.014.

Attiogbe, E. K., & Rizkalla, S. H. (1988). Response of concrete to sulfuric acid attack. ACI materials journal, 85(6), 481-488. doi: 10.14359/2210.

Rafeeq Ahmed, S., & Munirudrappa, N. (1998). Effect of sulphuric acid on plasticized concrete. Indian Journal of Engineering and Materials Sciences, (5)5, 291–294.

Aydın, S., Yazıcı, H., Yiğiter, H., & Baradan, B. (2007). Sulfuric acid resistance of high-volume fly ash concrete. Building and Environment, 42(2), 717-721. doi:10.1016/j.buildenv.2005.10.024.

Monteny, J., De Belie, N., Vincke, E., Verstraete, W., & Taerwe, L. (2001). Chemical and microbiological tests to simulate sulfuric acid corrosion of polymer-modified concrete. Cement and Concrete Research, 31(9), 1359–1365. doi:10.1016/S0008-8846(01)00565-8.

Torii, K., & Kawamura, M. (1994). Effects of fly ash and silica fume on the resistance of mortar to sulfuric acid and sulfate attack. Cement and Concrete Research, 24(2), 361–370. doi:10.1016/0008-8846(94)90063-9.

Roy, D. M., Arjunan, P., & Silsbee, M. R. (2001). Effect of silica fume, metakaolin, and low-calcium fly ash on chemical resistance of concrete. Cement and Concrete Research, 31(12), 1809–1813. doi:10.1016/S0008-8846(01)00548-8.

Koushkbaghi, M., Kazemi, M. J., Mosavi, H., & Mohseni, E. (2019). Acid resistance and durability properties of steel fiber-reinforced concrete incorporating rice husk ash and recycled aggregate. Construction and Building Materials, 202, 266–275. doi:10.1016/j.conbuildmat.2018.12.224.

Jerlin Regin, J., Vincent, P., & Ganapathy, C. (2017). Effect of Mineral Admixtures on Mechanical Properties and Chemical Resistance of Lightweight Coconut Shell Concrete. Arabian Journal for Science and Engineering, 42(3), 957–971. doi:10.1007/s13369-016-2240-1.

BS 8110-1. (1997). Structural use of concrete-Part 1: code of practice for design and construction. British Standards, London, United Kingdom.

Guo, Z., & Shi, X. (2011). Experiment and calculation of reinforced concrete at elevated temperatures. Tsinghua university centenary celebration, Elsevier. doi:10.1016/c2010-0-65988-8

Yang, H., Zhao, H., & Liu, F. (2018). Residual cube strength of coarse RCA concrete after exposure to elevated temperatures. Fire and Materials, 42(4), 424–435. doi:10.1002/fam.2508.

Shety, M. S. (2014). Concrete technology-theory and practice (6th Ed.). S. Chand and Company Ltd, New Delhi, India.

Osuji, S., & Ukeme, U. (2015). Effects of Elevated Temperature on Compressive Strength of Concrete: A Case Study of Grade 40 Concrete. Nigerian Journal of Technology, 34(3), 472. doi:10.4314/njt.v34i3.7.

Asadi, I., Shafigh, P., Hassan, Z. F. B. A., & Mahyuddin, N. B. (2018). Thermal conductivity of concrete–A review. Journal of Building Engineering, 20, 81-93. doi:10.1016/j.jobe.2018.07.002.

Sukontasukkul, P., Uthaichotirat, P., Sangpet, T., Sisomphon, K., Newlands, M., Siripanichgorn, A., & Chindaprasirt, P. (2019). Thermal properties of lightweight concrete incorporating high contents of phase change materials. Construction and Building Materials, 207, 431–439. doi:10.1016/j.conbuildmat.2019.02.152.

Mathew, S. P., Nadir, Y., & Arif, M. M. (2020). Experimental study of thermal properties of concrete with partial replacement of coarse aggregate by coconut shell. Materials Today: Proceedings, 27, 415–420. doi:10.1016/j.matpr.2019.11.249.

Gunasekaran, K., Annadurai, R., & Kumar, P. S. (2015). A study on some durability properties of coconut shell aggregate concrete. Materials and Structures, 48(5), 1253-1264. doi:10.1617/s11527-013-0230-2.

BS EN 197-1. (2000). Cement. Composition, specifications and conformity criteria for common cements. British Standard Institute, London, United Kingdom.

Popovics, S. (1992). Concrete Materials: Properties, Specifications and Testing (2nd Ed.). Noyes, New Jersey, United States,

BS EN 1097. (2013). Test for Mechanical and Physical Properties of Aggregates. British standard institute, London, United Kingdom. doi:10.3403/BSEN1097.

BS 882. (1992). Specification for Aggregates from Natural Sources for Concrete. British standard institute, London, United Kingdom.

Orasugh, J. T., Ghosh, S. K., & Chattopadhyay, D. (2020). Nanofiber-reinforced biocomposites. Fiber-Reinforced Nanocomposites: Fundamentals and Applications, 199–233. doi:10.1016/b978-0-12-819904-6.00010-4.

Lin, P. C., Lin, S., Wang, P. C., & Sridhar, R. (2014). Techniques for physicochemical characterization of nanomaterials. Biotechnology Advances, 32(4), 711–726. doi:10.1016/j.biotechadv.2013.11.006.

Zaid, O., Ahmad, J., Siddique, M. S., Aslam, F., Alabduljabbar, H., & Khedher, K. M. (2021). A step towards sustainable glass fiber reinforced concrete utilizing silica fume and waste coconut shell aggregate. Scientific Reports, 11(1). doi:10.1038/s41598-021-92228-6.

BS 1881-103. (1993). Testing concrete-Part 103: Method for determination of compacting factor. British Standard Institute, London, United Kingdom.

BS 1881-102. (1983). Testing concrete -Part 102: Method for determination of slump. British Standard Institute, London, United Kingdom.

ASTM C267. (2020). Standard Test Methods for Chemical Resistance of Mortars, Grouts, and Monolithic Surfacings and Polymer Concretes. ASTM International, Pennsylvania, United States.

Allawi, A. A., & Ali, S. I. (2020). Flexural Behavior of Composite GFRP Pultruded I-Section Beams under Static and Impact Loading. Civil Engineering Journal, 6(11), 2143–2158. doi:10.28991/cej-2020-03091608.

Duy Nguyen, P., Hiep Dang, V., Anh Vu, N., & Eduardovich, P. A. (2020). Long-term Deflections of Hybrid GFRP/Steel Reinforced Concrete Beams under Sustained Loads. Civil Engineering Journal, 6, 1–11. doi:10.28991/cej-2020-sp(emce)-01.

Alengaram, U. J., Jumaat, M. Z., & Mahmud, H. (2008). Influence of sand content and silica fume on mechanical properties of palm kernel shell concrete. International Conference on Construction and Building Technology ICCBT, 23, 251–262, Kuala Lumpur, Malaysia.

Gunasekaran, K., Annadurai, R., & Kumar, P. S. (2012). Long term study on compressive and bond strength of coconut shell aggregate concrete. Construction and Building Materials, 28(1), 208–215. doi:10.1016/j.conbuildmat.2011.08.072.

Ann Adajar, M., Galupino, J., Frianeza, C., Faye Aguilon, J., SY, J. B., & Tan, P. A. (2020). Compressive Strength and Durability of Concrete with Coconut Shell Ash as Cement Replacement. International Journal of GEOMATE, 17, 183–190. doi:10.21660/2020.70.9132.

Bayasi, Z., & Soroushian, P. (1989). Optimum use of pozzolanic materials in steel fiber reinforced concrete. Transportation Research Record, 1226, 25–30.

Bheel, N., Mahro, S. K., & Adesina, A. (2021). Influence of coconut shell ash on workability, mechanical properties, and embodied carbon of concrete. Environmental Science and Pollution Research, 28(5), 5682–5692. doi:10.1007/s11356-020-10882-1.

Iffat, S. (2015). Relation between density and compressive strength of hardened concrete. Concrete Research Letters, 6(4), 182-189.

Kanojia, A., & Jain, S. K. (2017). Performance of coconut shell as coarse aggregate in concrete. Construction and Building Materials, 140, 150–156. doi:10.1016/j.conbuildmat.2017.02.066.

Gunasekaran, K., Kumar, P. S., & Lakshmipathy, M. (2011). Mechanical and bond properties of coconut shell concrete. Construction and Building Materials, 25(1), 92–98. doi:10.1016/j.conbuildmat.2010.06.053.

Adesina, A., & Awoyera, P. (2019). Overview of trends in the application of waste materials in self-compacting concrete production. SN Applied Sciences, 1(9), 962. doi:10.1007/s42452-019-1012-4.

Awoyera, P. O., Adesina, A., & Gobinath, R. (2019). Role of recycling fine materials as filler for improving performance of concrete - a review. Australian Journal of Civil Engineering, 17(2), 85–95. doi:10.1080/14488353.2019.1626692.

Bheel, N., Memon, A. S., Khaskheli, I. A., Talpur, N. M., Talpur, S. M., & Khanzada, M. A. (2020). Effect of Sugarcane Bagasse Ash and Lime Stone Fines on the Mechanical Properties of Concrete. Engineering, Technology & Applied Science Research, 10(2), 5534–5537. doi:10.48084/etasr.3434.

Yerramala, A., & Ramachandrudu, C. (2012). Properties of concrete with coconut shells as aggregate replacement. International Journal of Engineering Inventions, 1(6), 21-31.

Prakash, R., Thenmozhi, R., Raman, S. N., Subramanian, C., & Divyah, N. (2021). An investigation of key mechanical and durability properties of coconut shell concrete with partial replacement of fly ash. Structural Concrete, 22(S1), E985–E996. doi:10.1002/suco.201900162.

Kumar, V. R. P., Gunasekaran, K., & Shyamala, T. (2019). Characterization study on coconut shell concrete with partial replacement of cement by GGBS. Journal of Building Engineering, 26. doi:10.1016/j.jobe.2019.100830.

BS 1881: Part 122. (1983). Testing concrete Part 122, Methods for determination of water absorption. British Standard Institute, London, United Kingdom.

Tomar, R., Kishore, K., Singh Parihar, H., & Gupta, N. (2021). A comprehensive study of waste coconut shell aggregate as raw material in concrete. Materials Today: Proceedings, 44, 437–443. doi:10.1016/j.matpr.2020.09.754.

Mo, K. H., Mohd Anor, F. A., Alengaram, U. J., Jumaat, M. Z., & Rao, K. J. (2018). Properties of metakaolin-blended oil palm shell lightweight concrete. European Journal of Environmental and Civil Engineering, 22(7), 852–868. doi:10.1080/19648189.2016.1229222.

Subaşi, S. (2009). The effects of using fly ash on high strength lightweight concrete produced with expanded clay aggregate. Scientific Research and Essays, 4(4), 275–288.

Prakash, R., Thenmozhi, R., & Raman, S. N. (2019). Mechanical characterisation and flexural performance of eco-friendly concrete produced with fly ash as cement replacement and coconut shell coarse aggregate. International Journal of Environment and Sustainable Development, 18(2), 131–148. doi:10.1504/IJESD.2019.099491.

Chakradhara Rao, M. (2021). Influence of brick dust, stone dust, and recycled fine aggregate on properties of natural and recycled aggregate concrete. Structural Concrete, 22(S1), E105–E120. doi:10.1002/suco.202000103.

Ibrahim, R. K., Ramyar, K., Hamid, R., & Taha, M. R. (2011). The effect of high temperature on mortars containing silica fume. Journal of Applied Sciences, 11(14), 2666–2669. doi:10.3923/jas.2011.2666.2669.

Ibrahim, M. J. Garba, A. S. J. Smith, B. Muhammad, & S. M. Ishaq. (2020). Behaviour of Coconut Shell Aggregate (CSA) Concrete at Elevated Temperature. IJSRD - International Journal for Scientific Research & Development, 8(4), 2321–0613.

Shetty, M. S. (2000). Concrete Technology Theory and Practice (4th Ed.). S.Chand & Company Pvt Ltd. New Delhi, India.

Raju, P. S. N., & Dayaratnam, P. (1984). Durability of concrete exposed to dilute sulphuric acid. Building and Environment, 19(2), 75–79. doi:10.1016/0360-1323(84)90032-5.

Wegian, F. M. (2010). Effect of seawater for mixing and curing on structural concrete. IES Journal Part A: Civil and Structural Engineering, 3(4), 235–243. doi:10.1080/19373260.2010.521048.

Ge, Z., Wang, Y., Sun, R., Wu, X., & Guan, Y. (2015). Influence of ground waste clay brick on properties of fresh and hardened concrete. Construction and Building Materials, 98, 128–136. doi:10.1016/j.conbuildmat.2015.08.100.

Joorabchian, S. M. (2010). Durability of concrete exposed to sulfuric acid attack. Master Thesis. Ryerson University, Toronto, Ontario, Canada.

Shi, C., & Stegemann, J. A. (2000). Acid corrosion resistance of different cementing materials. Cement and Concrete Research, 30(5), 803–808. doi:10.1016/S0008-8846(00)00234-9.

Khoury, G. A. (2000). Effect of fire on concrete and concrete structures. Progress in Structural Engineering and Materials, 2(4), 429–447. doi:10.1002/pse.51.

Taylor, H. F. (1997). Cement chemistry. Thomas Telford, London, United Kingdom. doi:10.1680/cc.25929.

Mwilongo, K. P., Machunda, R. L., & Jande, Y. A. C. (2020). Effect of elevated temperature on compressive strength and physical properties of neem seed husk ash concrete. Materials, 13(5), 1198. doi:10.3390/ma13051198.

Xu, Y., Wong, Y. L., Poon, C. S., & Anson, M. (2001). Impact of high temperature on PFA concrete. Cement and Concrete Research, 31(7), 1065–1073. doi:10.1016/S0008-8846(01)00513-0.

Fares, H., Noumowe, A., & Remond, S. (2009). Self-consolidating concrete subjected to high temperature. Mechanical and physicochemical properties. Cement and Concrete Research, 39(12), 1230–1238. doi:10.1016/j.cemconres.2009.08.001.

Full Text: PDF

DOI: 10.28991/CEJ-2022-08-02-013


  • There are currently no refbacks.

Copyright (c) 2022 Trokon Cooper Herring

Creative Commons License
This work is licensed under a Creative Commons Attribution 4.0 International License.