Ceramic Waste Powder as a Partial Substitute of Fly Ash for Geopolymer Concrete Cured at Ambient Temperature
Abstract
Doi: 10.28991/CEJ-2022-08-07-05
Full Text: PDF
Keywords
References
Saranya, P., Nagarajan, P., & Shashikala, A. P. (2019). Development of ground-granulated blast-furnace slag-dolomite geopolymer concrete. ACI Materials Journal, 116(6), 235–243. doi:10.14359/51716981.
Reddy, D. V., Edouard, J.-B., & Sobhan, K. (2013). Durability of Fly Ash–Based Geopolymer Structural Concrete in the Marine Environment. Journal of Materials in Civil Engineering, 25(6), 781–787. doi:10.1061/(asce)mt.1943-5533.0000632.
Nath, P., & Sarker, P. K. (2017). Flexural strength and elastic modulus of ambient-cured blended low-calcium fly ash geopolymer concrete. Construction and Building Materials, 130, 22–31. doi:10.1016/j.conbuildmat.2016.11.034.
Frayyeh, Q. J., & Kamil, M. H. (2021). The Effect of Adding Fibers on Dry Shrinkage of Geopolymer Concrete. Civil Engineering Journal, 7(12), 2099–2108. doi:10.28991/cej-2021-03091780.
Fernandez-Jimenez, A., García-Lodeiro, I., & Palomo, A. (2007). Durability of alkali-activated fly ash cementitious materials. Journal of Materials Science, 42(9), 3055–3065. doi:10.1007/s10853-006-0584-8.
Deb, P. S., & Sarker, P. K. (2017). Effects of Ultrafine Fly Ash on Setting, Strength, and Porosity of Geopolymers Cured at Room Temperature. Journal of Materials in Civil Engineering, 29(2), 6016021. doi:10.1061/(asce)mt.1943-5533.0001745.
Phoo-Ngernkham, T., Phiangphimai, C., Damrongwiriyanupap, N., Hanjitsuwan, S., Thumrongvut, J., & Chindaprasirt, P. (2018). A Mix Design Procedure for Alkali-Activated High-Calcium Fly Ash Concrete Cured at Ambient Temperature. Advances in Materials Science and Engineering, 2018, 1–13. doi:10.1155/2018/2460403.
Duxson, P., Fernández-Jiménez, A., Provis, J. L., Lukey, G. C., Palomo, A., & Van Deventer, J. S. J. (2007). Geopolymer technology: The current state of the art. Journal of Materials Science, 42(9), 2917–2933. doi:10.1007/s10853-006-0637-z.
Palomo, A., Grutzeck, M. W., & Blanco, M. T. (1999). Alkali-activated fly ashes: A cement for the future. Cement and Concrete Research, 29(8), 1323–1329. doi:10.1016/S0008-8846(98)00243-9.
Mustafa Al Bakria, A. M., Kamarudin, H., Bin Hussain, M., Khairul Nizar, I., Zarina, Y., & Rafiza, A. R. (2011). The effect of curing temperature on physical and chemical properties of geopolymers. Physics Procedia, 22, 286–291. doi:10.1016/j.phpro.2011.11.045.
Cheng, Y. hong, Huang, F., Liu, R., Hou, J. long, & Li, G. lu. (2016). Test research on effects of waste ceramic polishing powder on the permeability resistance of concrete. Materials and Structures, 49(3), 729–738. doi:10.1617/s11527-015-0533-6.
García-Ten, F. J., Quereda Vázquez, M. F., Gil Albalat, C., Chumillas Villalba, D., Zaera, V., & Segura Mestre, M. C. (2016). LIFE CERAM. Zero waste in ceramic tile manufacture. Key Engineering Materials, 663, 23–33. doi:10.4028/www.scientific.net/KEM.663.23.
El-Dieb, A. S., Taha, M. R., Kanaan, D., & Aly, S. T. (2018). Ceramic waste powder: From landfill to sustainable concretes. Proceedings of Institution of Civil Engineers: Construction Materials, 171(3), 109–116. doi:10.1680/jcoma.17.00019.
Sánchez de Rojas, M. I., Frías, M., Sabador, E., Asensio, E., Rivera, J., & Medina, C. (2018). Use of ceramic industry milling and glazing waste as an active addition in cement. Journal of the American Ceramic Society, 101(5), 2028–2037. doi:10.1111/jace.15355.
Huseien, G. F., Sam, A. R. M., Shah, K. W., & Mirza, J. (2020). Effects of ceramic tile powder waste on properties of self-compacted alkali-activated concrete. Construction and Building Materials, 236, 117574. doi:10.1016/j.conbuildmat.2019.117574.
Aly, S. T., Kanaan, D. M., El-Dieb, A. S., & Abu-Eishah, S. I. (2018). Properties of Ceramic Waste Powder-Based Geopolymer Concrete. International Congress on Polymers in Concrete (ICPIC 2018), 429–435. doi:10.1007/978-3-319-78175-4_54.
Rashad, A. M., & Essa, G. M. F. (2020). Effect of ceramic waste powder on alkali-activated slag pastes cured in hot weather after exposure to elevated temperature. Cement and Concrete Composites, 111, 103617. doi:10.1016/j.cemconcomp.2020.103617.
Zhang, G. Y., Bae, S. C., Lin, R. S., & Wang, X. Y. (2021). Effect of waste ceramic powder on the properties of alkali–activated slag and fly ash pastes exposed to high temperature. Polymers, 13(21). doi:10.3390/polym13213797.
Shoaei, P., Musaeei, H. R., Mirlohi, F., Narimani zamanabadi, S., Ameri, F., & Bahrami, N. (2019). Waste ceramic powder-based geopolymer mortars: Effect of curing temperature and alkaline solution-to-binder ratio. Construction and Building Materials, 227, 116686. doi:10.1016/j.conbuildmat.2019.116686.
Huseien, G. F., Sam, A. R. M., Shah, K. W., Mirza, J., & Tahir, M. M. (2019). Evaluation of alkali-activated mortars containing high volume waste ceramic powder and fly ash replacing GBFS. Construction and Building Materials, 210, 78–92. doi:10.1016/j.conbuildmat.2019.03.194.
Sarkar, M., & Dana, K. (2021). Partial replacement of metakaolin with red ceramic waste in geopolymer. Ceramics International, 47(3), 3473–3483. doi:10.1016/j.ceramint.2020.09.191.
Azevedo, A. R. G., Vieira, C. M. F., Ferreira, W. M., Faria, K. C. P., Pedroti, L. G., & Mendes, B. C. (2020). Potential use of ceramic waste as precursor in the geopolymerization reaction for the production of ceramic roof tiles. Journal of Building Engineering, 29. doi:10.1016/j.jobe.2019.101156.
Saxena, R., & Gupta, T. (2022). Assessment of mechanical, durability and microstructural properties of geopolymer concrete containing ceramic tile waste. Journal of Material Cycles and Waste Management, 24(2), 725–742. doi:10.1007/s10163-022-01353-5.
Memiş, S., & Bılal, M. A. M. (2022). Taguchi optimization of geopolymer concrete produced with rice husk ash and ceramic dust. Environmental Science and Pollution Research, 29(11), 15876–15895. doi:10.1007/s11356-021-16869-w.
Adak, D., Sarkar, M., & Mandal, S. (2017). Structural performance of nano-silica modified fly-ash based geopolymer concrete. Construction and Building Materials, 135, 430–439. doi:10.1016/j.conbuildmat.2016.12.111.
Nath, S. K., Maitra, S., Mukherjee, S., & Kumar, S. (2016). Microstructural and morphological evolution of fly ash based geopolymers. Construction and Building Materials, 111, 758–765. doi:10.1016/j.conbuildmat.2016.02.106.
Amran, Y. H. M., Alyousef, R., Alabduljabbar, H., & El-Zeadani, M. (2020). Clean production and properties of geopolymer concrete; A review. Journal of Cleaner Production, 251, 119679. doi:10.1016/j.jclepro.2019.119679.
Deb, P. S., Sarker, P. K., & Barbhuiya, S. (2015). Effects of nano-silica on the strength development of geopolymer cured at room temperature. Construction and Building Materials, 101, 675–683. doi:10.1016/j.conbuildmat.2015.10.044.
Parveen, Singhal, D., Junaid, M. T., Jindal, B. B., & Mehta, A. (2018). Mechanical and microstructural properties of fly ash based geopolymer concrete incorporating alccofine at ambient curing. Construction and Building Materials, 180, 298–307. doi:10.1016/j.conbuildmat.2018.05.286.
Albitar, M., Mohamed Ali, M. S., Visintin, P., & Drechsler, M. (2017). Durability evaluation of geopolymer and conventional concretes. Construction and Building Materials, 136, 374–385. doi:10.1016/j.conbuildmat.2017.01.056.
Naskar, S., & Chakraborty, A. K. (2016). Effect of nano materials in geopolymer concrete. Perspectives in Science, 8, 273–275. doi:10.1016/j.pisc.2016.04.049.
Wardhono, A., Gunasekara, C., Law, D. W., & Setunge, S. (2017). Comparison of long term performance between alkali activated slag and fly ash geopolymer concretes. Construction and Building Materials, 143, 272–279. doi:10.1016/j.conbuildmat.2017.03.153.
Shah, K. W., & Huseien, G. F. (2020). Bond strength performance of ceramic, fly ash and GBFS ternary wastes combined alkali-activated mortars exposed to aggressive environments. Construction and Building Materials, 251, 119088. doi:10.1016/j.conbuildmat.2020.119088.
IS-3812 (Part1). (2013). Indian Standard Pulverized Fuel Ash-Specification, Part 1 for Use as Pozzolana in Cement, Cement Mortar and Concrete (Third Revision). Bureau of Indian Standards, New Delhi, India.
El-Dieb, A. S., Taha, M. R., & Abu-Eishah, S. I. (2019). The use of ceramic waste powder (CWP) in making eco-friendly concretes. Ceramic Materials: Synthesis, Characterization, Applications and Recycling, 1-35. doi:10.5772/intechopen.81842.
Sathish Kumar, V., Ganesan, N., & Indira, P. V. (2017). Effect of Molarity of Sodium Hydroxide and Curing Method on the Compressive Strength of Ternary Blend Geopolymer Concrete. IOP Conference Series: Earth and Environmental Science, 80(1), 12011. doi:10.1088/1755-1315/80/1/012011.
IS-383. (2016). Indian Standard Coarse and Fine Aggregates for Concrete (Third Revision). Bureau of Indian Standards, New Delhi, India.
Lloyd, N., & Rangan, V. (2010). Geopolymer concrete with fly ash. The Second International Conference on sustainable construction Materials and Technologies, 28-30 June, 2010, Ancona, Italy.
IS-1199 (Part 2). (2018). Indian Standard Fresh Concrete-Methods of Sampling, Testing and Analysis, Part 2 determination of consistency of fresh concrete (first revision). Bureau of Indian Standards, New Delhi, India.
IS-516 (Part1-Sec1). (2021). Hardened Concrete-Methods of Test-Part1 Testing of Strength of Hardened Concrete-Section 1Compressive, Flexural and Split tensile Strength. Bureau of Indian Standards, New Delhi, India.
IS-5816. (1999). Indian Standard Splitting tensile Strength of Concrete Method of Test (First revision). Bureau of Indian Standards, New Delhi, India.
ASTM C642-13. (2013). Standard Test Method for density, Absorption, and Voids in Hardened Concrete. ASTM International, Pennsylvania, United States.
IS-456. (2000). Indian Standard Plain and reinforced Concrete Code of Practice (Fourth Revision). Bureau of Indian Standards, New Delhi, India.
Sofi, M., van Deventer, J. S. J., Mendis, P. A., & Lukey, G. C. (2007). Engineering properties of inorganic polymer concretes (IPCs). Cement and Concrete Research, 37(2), 251–257. doi:10.1016/j.cemconres.2006.10.008.
Balamuralikrishnan, R., & Saravanan, J. (2021). Effect of addition of alccofine on the compressive strength of cement mortar cubes. Emerging Science Journal, 5(2), 155-170. doi:10.28991/esj-2021-01265.
Provis, J. L., & van Deventer, J. S. J. (2007). Geopolymerisation kinetics. 2. Reaction kinetic modelling. Chemical Engineering Science, 62(9), 2318–2329. doi:10.1016/j.ces.2007.01.028.
IS-10262. (2019). Indian Standard Concrete Mix proportioning-Guidelines (Second Revision). Bureau of Indian Standards, New Delhi, India.
Abdollahnejad, Z., Luukkonen, T., Mastali, M., Kinnunen, P., & Illikainen, M. (2019). Development of One-Part Alkali-Activated Ceramic/Slag Binders Containing Recycled Ceramic Aggregates. Journal of Materials in Civil Engineering, 31(2), 4018386. doi:10.1061/(asce)mt.1943-5533.0002608.
Shehata, N., Mohamed, O. A., Sayed, E. T., Abdelkareem, M. A., & Olabi, A. G. (2022). Geopolymer concrete as green building materials: Recent applications, sustainable development and circular economy potentials. Science of the Total Environment, 836, 155577. doi:10.1016/j.scitotenv.2022.155577.
Chindaprasirt, P., & Rattanasak, U. (2017). Characterization of the high-calcium fly ash geopolymer mortar with hot-weather curing systems for sustainable application. Advanced Powder Technology, 28(9), 2317–2324. doi:10.1016/j.apt.2017.06.013.
Amin, S. K., El-Sherbiny, S. A., El-Magd, A. A. M. A., Belal, A., & Abadir, M. F. (2017). Fabrication of geopolymer bricks using ceramic dust waste. Construction and Building Materials, 157, 610–620. doi:10.1016/j.conbuildmat.2017.09.052.
Vaidya, S., Diaz, E. I., & Allouche, E. N. (2011). Experimental evaluation of self-cure geopolymer concrete for mass pour applications. World of Coal Ash (WOCA) Conference, 9-12 May, 2011, Denver, United States.
Topark-Ngarm, P., Chindaprasirt, P., & Sata, V. (2015). Setting Time, Strength, and Bond of High-Calcium Fly Ash Geopolymer Concrete. Journal of Materials in Civil Engineering, 27(7). doi:10.1061/(asce)mt.1943-5533.0001157.
Lee, S., & Shin, S. (2019). Prediction on compressive and split tensile strengths of GGBFS/FA based GPC. Materials, 12(24), 4198. doi:10.3390/MA12244198.
Diaz-Loya, E. I., Allouche, E. N., & Vaidya, S. (2011). Mechanical properties of fly-ash-based geopolymer concrete. ACI Materials Journal, 108(3), 300–306. doi:10.14359/51682495.
Jindal, B. B., Jangra, P., & Garg, A. (2020). Effects of ultra-fine slag as mineral admixture on the compressive strength, water absorption and permeability of rice husk ash based geopolymer concrete. Materials Today: Proceedings, 32, 871–877. doi:10.1016/j.matpr.2020.04.219.
McCarter, W. J., Ezirim, H., & Emerson, M. (1992). Absorption of water and chloride into concrete. Magazine of Concrete Research, 44(158), 31–37. doi:10.1680/macr.1992.44.158.31.
Alexander, M. G., Mackechnie, J. R., & Ballim, Y. (1999). Guide to the use of durability indexes for achieving durability in concrete structures, Research Monograph No. 2. University of Cape Town, Department of Civil Engineering: Cape Town, South Africa.
Chen, X., Zhang, D., Cheng, S., Xu, X., Zhao, C., Wang, X., Wu, Q., & Bai, X. (2022). Sustainable reuse of ceramic waste powder as a supplementary cementitious material in recycled aggregate concrete: Mechanical properties, durability and microstructure assessment. Journal of Building Engineering, 52, 104418. doi:10.1016/j.jobe.2022.104418.
Alehyen, S., El Achouri, M., & Taibi, M. (2017). Characterization, microstructure and properties of fly ash-based geopolymer. Journal of Materials and Environmental Science, 8(5), 1783–1796.
DOI: 10.28991/CEJ-2022-08-07-05
Refbacks
- There are currently no refbacks.
Copyright (c) 2022 JAY KIRITKUMAR BHAVSAR

This work is licensed under a Creative Commons Attribution 4.0 International License.