A Study on Linear Shrinkage Behavior of Peat Soil Stabilized with Eco-Processed Pozzolan (EPP)

Mohamad S. Sulaiman, Habib M. Mohamad, Anis A. Suhaimi

Abstract


Peat soil incorporated materials from fragmented organic constituents that originated in submerged wetlands. Peat soil has a particular index property that accounts for more than 75% of its organic content. Due to its low shear strength, high moisture content, high compressibility, low specific gravity, restricted bearing capacity, irregular shrinkage, and instability, peat soil is interpreted as a challenging soil for the building industry. The purpose of this study is to look at the index properties of Klias, Beaufort peat soil, and eco processed pozzolan (EPP), as well as to investigate the strengthening and stiffening effects of EPP stabilization treatment on peat soil and the association between EPP and linear shrinkage effects of peat. The linear shrinkage used to measure the shrinkage behaviour of peat soil consists of untreated samples, namely peat soil, and treated samples, which are peat soil in addition to EPP with a concentration of 20% and 30%, respectively. A scanning electron microscope (SEM) is employed to produce images of a sample by scanning the surface of an untreated peat sample and treated peat samples with EPP. High moisture content with an average of 580% was reported for the KBpt area. EPP can potentially help to reduce the shrinkage by almost 66.66%. Additionally, the results showed that by adding EPP as filler material to the peat soil, shrinkage behaviour decreases significantly for untreated peat soil and treated peat soil with EPP, with 4.29% reduced to 1.43% significantly. Correspondingly, the crystallization process occurred between peat soil and EPP, which contributed to the reduction of shrinkage and tension crack in peat soil and produced Muscovite, which is appeared and identified as mineral that important in rock-forming mineral.

 

Doi: 10.28991/CEJ-2022-08-06-05

Full Text: PDF


Keywords


Eco-Processed Pozzolan; Peat Soil; Stabilization; Shrinkage.

References


Tong, T., Ling, N., & Sabarudin, M. (2015). Characteristics and correlation of the index properties peat soil: Parit Nipah. Journal of Applied Science and Agriculture, 10(5 Special), 19-23.

Wetlands International. (2010). A Quick Scan of Peatlands in Malaysia. Wetlands International Malaysia, Petaling Jaya, Malaysia. Available online: https://luk.staff.ugm.ac.id/rawa/Wetlands/PeatlandsInMalaysia.pdf (accessed on February 2022).

Cao, S. (2019). Research and Application of Peat in Agriculture. IOP Conference Series: Earth and Environmental Science, 384(1), 012174. doi:10.1088/1755-1315/384/1/012174.

Johari, N. N., Bakar, I., & Aziz, M. H. A. (2015). Consolidation Parameters of Reconstituted Peat Soil: Oedometer Testing. Applied Mechanics and Materials, 773-774, 1466–1470. doi:10.4028/www.scientific.net/amm.773-774.1466.

Yahaya, N. A. B. (2019). Soft ground Improvement using Pile Embankment. Master Thesis, School of Civil Engineering, Faculty of Engineering, Universiti Teknologi Malaysia, Skudai, Malaysia. Available online: http://eprints.utm.my/id/eprint/81529/1/ NorAshikinYahayaMSKA2019.pdf (accessed on February 2022).

Chindaprasirt, P., Homwuttiwong, S., & Jaturapitakkul, C. (2007). Strength and water permeability of concrete containing palm oil fuel ash and rice husk-bark ash. Construction and Building Materials, 21(7), 1492–1499. doi:10.1016/j.conbuildmat.2006.06.015.

Kusaimi, N. F. M., Hamzah, F., Jai, J., Zaki, N. A. M., & Ibrahim, N. (2020). Compressive strength and water absorption of pavement derived from palm oil eco processed pozzolan (Epp) material as partial cement replacement. ASEAN Journal of Chemical Engineering, 20(2), 205–215. doi:10.22146/ajche.60230.

Abd Rahman, R. F., Asrah, H., Rizalman, A. N., Mirasa, A. K., & Rajak, M. A. A. (2020). ’Study of Eco-Processed Pozzolan Characterization as Partial Replacement of Cement. Journal of Environmental Treatment Techniques, 8(3), 967-970.

Loh, S. K., James, S., Ngatiman, M., Cheong, K. Y., Choo, Y. M., & Lim, W. S. (2013). Enhancement of palm oil refinery waste - Spent bleaching earth (SBE) into bio organic fertilizer and their effects on crop biomass growth. Industrial Crops and Products, 49, 775–781. doi:10.1016/j.indcrop.2013.06.016.

Sharom, N. (2016). Performance of Eco-Processed Pozzolan Foamed Concrete as Cement Replacement. PhD Thesis, Faculty of Civil Engineering & Earth Resources, Universiti Malaysia Pahang, Pekan, Maslaysia.

Suhaimi, A. A., & Mohamad, H. M. (2021). Settlement Behaviour of Stabilised Peat: An Assessment with Eco-Processed Pozzolan (EPP) in Modified Electro-Osmotic Triaxial Cell. International Journal of GEOMATE, 21(88), 86–96. doi:10.21660/2021.88.j2296.

Kho, J. H. (2021). Incorporation of Eco Process Pozzolan (EPP) as Partial Cement Replacement and Superplasticisers in Concrete. IOP Conference Series: Earth and Environmental Science, 682(1), 012014. doi:10.1088/1755-1315/682/1/012014.

Andrejko, M. J., Fiene, F., & Cohen, A. D. (1983). Comparison of Ashing Techniques for Determination of the Inorganic Content of Peats. ASTM Special Technical Publication, 820, 5–20. doi:10.1520/stp37331s.

CIRIA, 2000. "Grouting for grouting engineering". CRIRIA Press, London, U. K., ISBN 086017 514 6.

Shah, A. S. N., Mustapha, K. A., & Hashim, R. (2020). Characterization and impact of peat fires on stabilization of tropical lowland peats in Banting, Selangor, Malaysia. Sains Malaysiana, 49(3), 471–481. doi:10.17576/jsm-2020-4903-02.

Oleszczuk, R., Bohne, K., Szatylowicz, J., Brandyk, T., & Gnatowski, T. (2003). Influence of load on shrinkage behavior of peat soils. Journal of Plant Nutrition and Soil Science, 166(2), 220–224. doi:10.1002/jpln.200390032.

Kazemian, S., K Huat, B. B., Prasad, A., Barghchi, M., & Malaysia, P. (2011). Effect of peat media on stabilization of peat by traditional binders. International Journal of the Physical Sciences, 6(3), 476–481. doi:10.5897/JJPS10.478.

Yulindasari. (2006). Compressibilty Characteristics of Fibrous Peat Soil. MSc Thesis, Faculty of Civil Engineering, Univesrsiti Teknologi Malasia, Skudai, Malaysia. Available online: http://eprints.utm.my/id/eprint/224/1/YulindasariMFKA2006.pdf (accessed on May 2022).

Raghunandan, M. E., & Sriraam, A. S. (2017). An overview of the basic engineering properties of Malaysian peats. Geoderma Regional, 11, 1–7. doi:10.1016/j.geodrs.2017.08.003.

Wong, L. S., Hashim, R., & Ali, F. H. (2009). A Review on Hydraulic Conductivity and Compressibility of Peat. Journal of Applied Sciences, 9(18), 3207–3218. doi:10.3923/jas.2009.3207.3218.

Päivänen, J. (1982). Physical properties of peat samples in relation to shrinkage upon drying. Silva Fennica, 16(3), 247–65. doi:10.14214/sf.a15076.

Hamamoto, S., Dissanayaka, S., Kawamoto, K., & Komatsu, T. (2010). Effects of Moisture Content and Shrinkage on Soil-Thermal Properties for Peat Soils in Japan. In International Conference on Sustainable Built Environment (ICSBE-2010), 13-14 December, 2010, Kand, Sri Lanka.

Mohamad, H. M., & Zainorabidin, A. (2021). Young’S Modulus of Peat Soil under Cyclic Loading. International Journal of GEOMATE, 21(84), 177–187. doi:10.21660/2021.84.j2164.

Wu, Y., Zhang, N., Slater, G., Waddington, J. M., & de Lannoy, C. F. (2020). Hydrophobicity of peat soils: Characterization of organic compound changes associated with heat-induced water repellency. Science of the Total Environment, 714, 136444. doi:10.1016/j.scitotenv.2019.136444.

Bin Zainorabidin, A., binti Saedon, N., bin Bakar, I., & bt Mohd Seth, N. F. (2015). An Investigation of Soil Volume Changes at Four Dimensional Points of Peat Soil Sample in Parit Nipah and Pontian. Applied Mechanics and Materials, 773-774, 1491–1496. doi:10.4028/www.scientific.net/amm.773-774.1491.

Zainorabidin, A., & Mohamad, H. M. (2016). A geotechnical exploration of Sabah peat soil: Engineering classifications and field surveys. Electronic Journal of Geotechnical Engineering, 21(20), 6671–6687.

Shuvaev, A. N., Smirnov, A. P., & Kartavy, S. V. (2020). The construction of roadbeds on permafrost and in swamps from reinforced soils of increased strength. Civil Engineering Journal, 6(10), 1922-1931. doi:10.28991/cej-2020-03091592.

Hashim, R., & Islam, S. (2008). Engineering properties of peat soils in Peninsular, Malaysia. Journal of Applied Sciences, 8(22), 4215–4219. doi:10.3923/jas.2008.4215.4219.

Mohamad, H. M., Zainorabidin, A., Musta, B., Mustafa, M. N., Amaludin, A. E., & Abdurahman, M. N. (2021). Compressibility behaviour and engineering properties of north borneo peat soil. Eurasian Journal of Soil Science, 10(3), 259–268. doi:10.18393/ejss.930620.

Huat, B. B. K., Prasad, A., Asadi, A., & Kazemian, S. (2014). Geotechnics of organic soils and peat (1st Ed.). CRC Press, London, United Kingdom. doi:10.1201/b15627.

Kolay, P. K., Dhakal, B., Kumar, S., & Puri, V. K. (2016). Effect of Liquid Acrylic Polymer on Geotechnical Properties of Fine-Grained Soils. International Journal of Geosynthetics and Ground Engineering, 2(4), 1–9. doi:10.1007/s40891-016-0071-5.

Mohidin, M. N., Zainorabdin, A., Madun, A., Yusof, M. F., Mokhtar, M., & Chew, Y. F. (2007). Some index properties on Rengit peat soil stabilize with cement-lime. Prosiding Kebangsaan Awam, 7, 29-31.

Quirk, J. (1994). Interparticle forces: a basis for the interpretation of soil physical behavior. Advances in agronomy, 53, 121-183, Elsevier Science, Amsterdam, Netherlands. doi:10.1016/S0065-2113(08)60614-8.

Mohamad, H. M., Zainorabidin, A., Musta, B., Mustafa, M. N., Amaludin, A. E., & Abdurahman, M. N. (2021). Compressibility behaviour and engineering properties of north borneo peat soil. Eurasian Journal of Soil Science, 10(3), 259–268. doi:10.18393/ejss.930620.

Talib, F. M., Mohamad, H. M., & Mustafa, M. N. (2021). Peat Soil Improvement with Bamboo Reinforcement Technology: a Review. International Journal of GEOMATE, 21(88), 75–85. doi:10.21660/2021.88.j2259.


Full Text: PDF

DOI: 10.28991/CEJ-2022-08-06-05

Refbacks

  • There are currently no refbacks.




Copyright (c) 2022 HABIB MUSA BIN MOHAMAD

Creative Commons License
This work is licensed under a Creative Commons Attribution 4.0 International License.
x
Message