Rotation of Stresses in French Wheel Tracking Test

Mohamed Djenane, Rafik Demagh, Farid Hammoud

Abstract


The main function of a pavement is to distribute the traffic-induced load over its different layers. While the flexible pavement design methods are based on a linear elastic calculation, the real behavior of the different layers is highly non-linear and elastic. They can also, in some cases, be plastic and viscous. This research aims to develop a three-dimensional numerical model that is closely similar to the test FWTT conditions. The model will have a real geometry wheel footprint (rather than a rectangular shape). As a substitute for incremental loading, the wheel movement during its passage over the specimen will be simulated by a horizontal displacement. These important characteristics of the model represent the novelty and the major difference between the current research and previous studies. The current model, which is based on the finite elements method, uses Abaqus software and a viscoelastic constitutive model. The materials' viscoelastic properties have been described by the Prony series, also called the relaxation modulus, which is a function of time. This parameter can be defined in most computer-aided engineering (CAE) software. The procedure for calculating the Prony series from experimental data is explained. The results obtained agree with the stress signal amplitude, the stress rotation principal, and the total displacement rotation when the load approaches the node considered and located in the middle of the specimen.

 

Doi: 10.28991/CEJ-2022-08-03-03

Full Text: PDF


Keywords


Pavement; FWTT; Abaqus; Viscoelastic; Prony Series; Rotation; Stress.

References


Lekarp, F., Isacsson, U., & Dawson, A. (2000). State of the art. II: Permanent strain response of unbound aggregates. Journal of Transportation Engineering, 126(1), 76–83. doi:10.1061/(ASCE)0733-947X(2000)126:1(76).

Bilodeau, K. (2008). Study of the variability of the properties of bituminous mixes. Synthesis project, LUCREB, 3-8. School of Higher Technology, Montreal, Canada (in French).

Gidel, G., Hornych, P., Chauvin, J. J., Breysse, D., & Denis, A. (2001). New approach for the study of permanent deformations of unprocessed bass with the triaxial apparatus with repeated loadings. Bulletin Of The Laboratories Of The Bridges And Roads, 233, 5–21 (in French)

Perret, J., (2004). Axle load modeling, Federal Polytechnic School of Lausanne, Lausanne, Switzerland (in French).

Habiballah, T. E. M. (2003). Modeling of permanent deformations of untreated Graves: application to the calculation of flexible pavements. University of Limoges, Limoges, France (in French).

Zarka, J., & Casier, J. (1981). Elastic-plastic response of a structure to cyclic loading: practical rules. Mechanics today, 93-198. Pergamon. doi:10.1016/b978-0-08-024749-6.50014-4.

Dongmo-Engeland, B. J. (2005). Characterization of rutting deformations of bituminous pavements. Ph.D. Thesis, ENTPE – INSA Lyon, Villeurbanne, France (in French).

Bassem, A., (2006). Numerical model for the mechanical behavior of pavements: application to the analysis of rutting. University of Lilles, Lille, France (in French).

Dawson, A. R., & Gomes-Correia, A. (1996). The effects of subgrade clay condition on the structural behaviour of road pavements. Proceedings of the European Symposium Euroflex 1993, Lisbon, Portugal.

El Abd, A. (2004). Development of a method for predicting the surface deformations of pavements with untreated courses. In French Journal of Civil Engineering, 8(1), 111. doi:10.1080/12795119.2004.9692572 (in French).

Lv, Q., Huang, W., Sadek, H., Xiao, F., & Yan, C. (2019). Investigation of the rutting performance of various modified asphalt mixtures using the Hamburg Wheel-Tracking Device test and Multiple Stress Creep Recovery test. Construction and Building Materials, 206, 62–70. doi:10.1016/j.conbuildmat.2019.02.015.

Lin, T., Ishikawa, T., Maruyama, K., & Tokoro, T. (2021). Pavement design method in Japan with consideration of climate effect and principal stress axis rotation. Transportation Geotechnics, 28. doi:10.1016/j.trgeo.2021.100552.

Liu, W., Lin, H., Guo, H., Zhang, H., Zhang, S., Mao, Y., & Fu, H. (2021). An approach to investigate coarse aggregates movement of asphalt mixture based on wheel tracking test. Construction and Building Materials, 309. doi:10.1016/j.conbuildmat.2021.125161.

Fedakar, H. I., Rutherford, C. J., & Cetin, B. (2021). Effect of principal stress rotation on deformation behavior of dense sand–clay mixtures. Road Materials and Pavement Design. doi:10.1080/14680629.2021.1948908.

Alnedawi, A., Nepal, K. P., & Al-Ameri, R. (2019). The Effect of Cyclic Load Characteristics on Unbound Granular Materials. Transportation Infrastructure Geotechnology, 6(2), 70–88. doi:10.1007/s40515-019-00070-1.

Partl, M. N., Bahia, H. U., Canestrari, F., De la Roche, C., Di Benedetto, H., Piber, H., & Sybilski, D. (Eds.). (2012). Advances in interlaboratory testing and evaluation of bituminous materials: state-of-the-art report of the RILEM technical committee 206-ATB (Vol. 9). Springer Science & Business Media, Dordrecht, Netherlands. doi:10.1007/978-94-007-5104-0.

Witczak, M., & Root, R. (1974). Summary of Complex Modulus Laboratory Test Procedures and Results. Fatigue and Dynamic Testing of Bituminous Mixtures, ASTM International, 67–94. doi:10.1520/stp32177s

Witczak, M. W., & Fonseca, O. A. (1996). Revised predictive model for dynamic (complex) modulus of asphalt mixtures. Transportation Research Record, 1540, 15–23. doi:10.3141/1540-03.

Di Benedetto, H., Gabet, T., Grenfell, J., Perraton, D., Sauzéat, C., & Bodin, D. (2012). Mechanical Testing of Bituminous Mixtures. RILEM State-of-the-Art Reports, 143–256. doi:10.1007/978-94-007-5104-0_4.

Blanc, M. (2011). Experimental study and modeling of soil behavior with rotation of main stress axes. Ph. D. Thesis, University of Lyon. Lyon, France (in French).

Perraton, D., Di Benedetto, H., Sauzéat, C., De La Roche, C., Bankowski, W., Partl, M., & Grenfell, J. (2011). Rutting of bituminous mixtures: Wheel tracking tests campaign analysis. Materials and Structures/Materiaux et Constructions, 44(5), 969–986. doi:10.1617/s11527-010-9680-y.

Nguyen, H.M. (2010). Cyclic behavior and permanent deformations of bituminous mixes. Ph.D Thesis, University of Lyon, Lyon. France (in French).

Zarka, J., & Casier, J. (1981). Elastic-Plastic Response of a Structure to Cyclic Loading: Practical Rules. Mechanics Today, 6, 93–198. doi:10.1016/b978-0-08-024749-6.50014-4.

Abaqus Analysis User’s Manual, Version 6.12. (2012). Dassault Systemes Simulia. Inc., Providence, RI, United Kingdom.

R.M. Christensen (1982). Theory of Viscoelasticity (2nd Edi.). Academic Press, Massachusetts, United States. (1982). doi:10.1016/b978-0-12-174252-2.x5001-7.

Tapia Romero, M. A., Dehonor Gomez, M., & Lugo Uribe, L. E. (2020). Prony series calculation for viscoelastic behavior modeling of structural adhesives from DMA data. Ingeniería Investigación y Tecnología, 21(2), 1–10. doi:10.22201/fi.25940732e.2020.21n2.014

Tschoegl, N. W. (1989). The Phenomenological Theory of Linear Viscoelastic Behavior (1st Edi.). Springer, Berlin, Germany. doi:10.1007/978-3-642-73602-5.

Di Benedetto, H., & Corté, J. F. (2005). Bituminous road materials: Constitution and thermomechanical properties of mixtures. Hermès science publications, Paris, France (in French).


Full Text: PDF

DOI: 10.28991/CEJ-2022-08-03-03

Refbacks

  • There are currently no refbacks.




Copyright (c) 2022 Djenane Mohamed

Creative Commons License
This work is licensed under a Creative Commons Attribution 4.0 International License.
x
Message