Influence of Fiber Hybridization on Strength and Toughness of RC Beams

Mohammed Muneer Meera Sahib, Surumi Rasia Salim


This paper focuses on the experimental investigation designed to study the behavior of hybrid fiber-reinforced concrete (HFRC) beams under flexure and impact loading. The addition of fibers to concrete can improve a number of its properties. For optimal response, different types of fibers may be suitably combined to produce HFRC. Optimized combinations of different fiber types in concrete can produce a composite with better engineering properties than that with only one type. The study compared the mechanical properties of fresh and hardened HFRC, Steel Fiber Reinforced Concrete (SFRC), and conventional concrete to arrive at the optimum fiber content for improved behavior of concrete by testing 135 specimens. Subsequently, the behavior of steel fiber-reinforced concrete beams was investigated with and without fiber hybridization under flexural and impact loading, followed by a comparison of the results. Fiber hybridization was achieved by developing concrete containing a combination of steel and polypropylene fibers. Eighteen beam specimens of size 1650×200×150 mm were tested in the investigation. Test outcomes demonstrated that the inclusion of fibers in a hybrid form could ensure superior composite performance in terms of flexure and impact resistance when compared to the incorporation of a single type of fibers in reinforced concrete.


Doi: 10.28991/CEJ-2022-08-03-010

Full Text: PDF


Reinforced Concrete; Fiber Hybridisation; Flexure; Impact; Toughness.


Lim, D. H., & Oh, B. H. (1999). Experimental and theoretical investigation on the shear of steel fibre reinforced concrete beams. Engineering Structures, 21(10), 937–944. doi:10.1016/S0141-0296(98)00049-2.

Stroeven, P., & Babut, R. (1986). Fracture mechanics and structural aspects of concrete. Heron, 31(2), 15-44.

Mobasher, B., & Shah, S. P. (1990, September). Interaction between fibers and the matrix in glass fiber reinforced concrete. In 1989 International Symposium on Thin Section Fiber Reinforced Concrete and Ferrocement at the 1989 ACI Convention (pp. 137-156). American Concrete Institute, Michigan, United States.

Mobasher, B., Ouyang, C., & Shah, S. P. (1991). Modeling of fiber toughening in cementitious materials using an R-curve approach. International Journal of Fracture, 50(3), 199–219. doi:10.1007/BF00032157.

Hannant, D. J. (1978). Fibre Cements and Fibre Concrete. John Wiley and Sons, New Jersey, United States.

Balaguru, P.N. and Shah, S.P. (1992). Fiber Reinforced Cement Composites. McGraw Hill International Editions, New York City, United States.

Pradeep Kumar, C., & Shahul Hameed, M. (2021). Experimental study on the behaviour of steel fibre when used as a secondary reinforcement in reinforced concrete beam. Materials Today: Proceedings. doi:10.1016/j.matpr.2021.11.033.

Almustafa, M. K., & Nehdi, M. L. (2022). Machine learning prediction of structural response of steel fiber-reinforced concrete beams subjected to far-field blast loading. Cement and Concrete Composites, 126, 104378. doi:10.1016/j.cemconcomp.2021.104378.

Ran, J., Li, T., Chen, D., Shang, L., Li, W., & Zhu, Q. (2021). Mechanical properties of concrete reinforced with corrugated steel fiber under uniaxial compression and tension. Structures, 34, 1890–1902. doi:10.1016/j.istruc.2021.08.135.

Hassan, R. F., Al-Salim, N. H., Mohammed, N. S., & Hussein, H. H. (2022). Experimental study and theoretical prediction on torsional strength with different steel fiber reinforced concretes and Cross-Section areas. Engineering Structures, 251, 113559. doi:10.1016/j.engstruct.2021.113559.

Yao, W., Li, J., & Wu, K. (2003). Mechanical properties of hybrid fiber-reinforced concrete at low fiber volume fraction. Cement and Concrete Research, 33(1), 27–30. doi:10.1016/S0008-8846(02)00913-4.

Xu, G., & Hannant, D. J. (1992). Flexural behaviour of combined polypropylene network and glass fibre reinforced cement. Cement and Concrete Composites, 14(1), 51–61. doi:10.1016/0958-9465(92)90039-X.

Kakemi, M., & Hannant, D. J. (1995). Mathematical model for tensile behaviour of hybrid continuous fibre cement composites. Composites, 26(9), 637–643. doi:10.1016/0010-4361(95)98912-5.

Mobasher, B., & Li, C. Y. (1996). Mechanical properties of hybrid cement-based composites. ACI Materials Journal, 93(3), 284–292. doi:10.14359/9813.

Narayanan, R., & Darwish, I. Y. S. (1987). Use of Steel Fibers as Shear Reinforcement. ACI Structural Journal, 84(3), 216–227. doi:10.14359/2654.

Cucchiara, C., La Mendola, L., & Papia, M. (2004). Effectiveness of stirrups and steel fibers as shear reinforcement. Cement and Concrete Composites, 26(7), 777–786. doi:10.1016/j.cemconcomp.2003.07.001.

Kwak, Y. K., Eberhard, M. O., Kim, W. S., & Kim, J. (2002). Shear strength of steel fiber-reinforced concrete beams without stirrups. ACI Structural journal, 99(4), 530-538. doi:10.14359/12122.

Xu, G., Magnani, S., & Hannant, D. J. (1998). Durability of hybrid polypropylene-glass fibre cement corrugated sheets. Cement and Concrete Composites, 20(1), 79–84. doi:10.1016/S0958-9465(97)00075-9.

Walton, P. L., & Majumdar, A. J. (1975). Cement-based composites with mixtures of different types of fibres. Composites, 6(5), 209–216. doi:10.1016/0010-4361(75)90416-4.

Balcikanli Bankir, M., & Sevim, U. K. (2020). Performance optimization of hybrid fiber concrete according to mechanical properties. Construction and Building Materials, 261, 119952. doi:10.1016/j.conbuildmat.2020.119952.

Akcay, B., & Ozsar, D. S. (2019). Do polymer fibres affect the distribution of steel fibres in hybrid fibre reinforced concretes? Construction and Building Materials, 228, 116732. doi:10.1016/j.conbuildmat.2019.116732.

Koniki, S., & Prasad, D. R. (2019). Influence of hybrid fibres on strength and stress-strain behaviour of concrete under uni-axial stresses. Construction and Building Materials, 207, 238–248. doi:10.1016/j.conbuildmat.2019.02.113.

Lawler, J. S., Zampini, D., & Shah, S. P. (2005). Microfiber and Macrofiber Hybrid Fiber-Reinforced Concrete. Journal of Materials in Civil Engineering, 17(5), 595–604. doi:10.1061/(asce)0899-1561(2005)17:5(595).

Wang, P., Huang, Z., Jiang, J., & Wu, Y. (2012). Performance of Hybrid Fiber Reinforced Concrete with Steel Fibers and Polypropylene Fibers. Civil Engineering and Urban Planning 2012, 458-461. doi:10.1061/9780784412435.081

Jiang, Z., Yang, X., Yan, Z., Chen, Q., Zhu, H., Wang, Y., Ju, J. W., Fan, Z., & Li, H. (2019). A stochastic micromechanical framework for hybrid fiber reinforced concrete. Cement and Concrete Composites, 102, 39–54. doi:10.1016/j.cemconcomp.2019.04.003.

Bentur А, M. S. (1990). Fiber reinforced cementitious composites. CRC Press, London, United Kingdom.

Ding, Y., Zhang, Y., & Thomas, A. (2009). The investigation on strength and flexural toughness of fibre cocktail reinforced self-compacting high performance concrete. Construction and Building Materials, 23(1), 448–452. doi:10.1016/j.conbuildmat.2007.11.006.

Chi, Y., Xu, L., & Zhang, Y. (2014). Experimental Study on Hybrid Fiber–Reinforced Concrete Subjected to Uniaxial Compression. Journal of Materials in Civil Engineering, 26(2), 211–218. doi:10.1061/(asce)mt.1943-5533.0000764.

Deng, F., Chi, Y., Xu, L., Huang, L., & Hu, X. (2021). Constitutive behavior of hybrid fiber reinforced concrete subject to uniaxial cyclic tension: Experimental study and analytical modeling. Construction and Building Materials, 295, 123650. doi:10.1016/j.conbuildmat.2021.123650.

Shaaban, I. G., Said, M., Khan, S. U., Eissa, M., & Elrashidy, K. (2021). Experimental and theoretical behaviour of reinforced concrete beams containing hybrid fibres. In Structures (Vol. 32, pp. 2143–2160). Elsevier. doi:10.1016/j.istruc.2021.04.021.

Teng, S., Afroughsabet, V., & Ostertag, C. P. (2018). Flexural behavior and durability properties of high performance hybrid-fiber-reinforced concrete. Construction and Building Materials, 182, 504–515. doi:10.1016/j.conbuildmat.2018.06.158.

IS 12269. (1989). Specification for 53 Grade Ordinary Portland Cement. Bureau of Indian Standards, New Delhi, India.

IS 383. (1970). Specifications for Coarse and Fine Aggregate from Natural Sources for Concrete. Bureau of Indian Standards, New Delhi, India.

IS 10262. (1982). Recommended Guidelines for Concrete Mix Design. Bureau of Indian Standards, New Delhi, India.

IS 456. (2000). Plain and Reinforced Concrete- Code of Practice. Bureau of Indian Standards, New Delhi, India.

Suresh, S. (2001). Torsional Behaviour of Reinforced Concrete Beams with Web Opening Subjected to Torsion, Bending Moment and Axial Tension. Ph.D. Thesis, Structural Engineering Division, Department of Civil Engineering, Indian Institute of Technology, Madras, India.

Full Text: PDF

DOI: 10.28991/CEJ-2022-08-03-010


  • There are currently no refbacks.

Copyright (c) 2022 Mohammed Muneer Meera Sahib, Surumi Rasia Salim

Creative Commons License
This work is licensed under a Creative Commons Attribution 4.0 International License.