Seismic Assessment of Tall Buildings Designed According to the Turkish Building Earthquake Code
Abstract
Doi: 10.28991/CEJ-2022-08-03-011
Full Text: PDF
Keywords
References
TBDY-2018. (2018). Turkish Building Earthquake Regulation. Ministry of Interior, Disaster and Emergency Management Authority (AFAD). Istanbul, Turkey (In Turkish). Available online: https://www.afad.gov.tr/kurumlar/afad.gov.tr/2309/ files/TBDY_2018.pdf (accessed on January 2022).
FEMA P-695. (2009). Quantification of building seismic performance factor. Applied Technology Council, Department of Homeland Security, FEMA. Washington, D.C., United States.
Gogus, A., & Wallace, J. W. (2015). Seismic Safety Evaluation of Reinforced Concrete Walls through FEMA P695 Methodology. Journal of Structural Engineering, 141(10), 04015002. doi:10.1061/(asce)st.1943-541x.0001221.
ACI 318-95. (1995). Building code requirements for structural concrete and commentary. American concrete institute, Michigan, United States.
Haselton, C. B., Liel, A. B., & Deierlein, G. G. (2010). Example application of the FEMA P695 (ATC-63) methodology for the collapse performance evaluation of reinforced concrete special moment frame systems. 9th US National and 10th Canadian Conference on Earthquake Engineering, Toronto, Canada.
ASCE/SEI 7-05. (2005). Minimum design loads for buildings and other structures. American Society of Civil Engineers, Structural Engineering Institute. Virginia, United States. doi:10.1061/9780784408094.
Li, T., Yang, T. Y., & Tong, G. (2019). Performance‐based plastic design and collapse assessment of diagrid structure fused with shear link. The Structural Design of Tall and Special Buildings, 28(6), e1589. doi:10.1002/tal.1589.
Mashal, M., & Filiatrault, A. (2012). Quantification of seismic performance factors for buildings incorporating three-dimensional construction system. In World Conference on Earthquake Engineering, Lisbon, Portugal.
Ezzeldin, M., Wiebe, L., & El-Dakhakhni, W. (2016). Seismic Collapse Risk Assessment of Reinforced Masonry Walls with Boundary Elements Using the FEMA P695 Methodology. Journal of Structural Engineering, 142(11), 04016108. doi:10.1061/(asce)st.1943-541x.0001579.
Kuşyılmaz, A., & Topkaya, C. (2016). Evaluation of seismic response factors for eccentrically braced frames using FEMA P695 methodology. Earthquake Spectra, 32(1), 303-321. doi: 10.1193/071014EQS097M.
Lee, J., & Kim, J. (2013). Seismic performance evaluation of staggered wall structures using FEMA P695 procedure. Magazine of Concrete Research, 65(17), 1023–1033. doi:10.1680/macr.12.00237.
Khojastehfar, E., Mirzaei Aminian, F., & Ghanbari, H. (2021). Seismic risk analysis of concrete moment-resisting frames against near-fault earthquakes. Proceedings of the Institution of Mechanical Engineers, Part O: Journal of Risk and Reliability, 235(1), 80–91. doi:10.1177/1748006X20940472.
Sadeghpour, A., & Ozay, G. (2020). Evaluation of Reinforced Concrete Frames Designed Based on Previous Iranian Seismic Codes. Arabian Journal for Science and Engineering, 45(10), 8069–8085. doi:10.1007/s13369-020-04548-w.
Siddiquee, K. N., Billah, A. M., & Issa, A. (2021). Seismic collapse safety and response modification factor of concrete frame buildings reinforced with superelastic shape memory alloy (SMA) rebar. Journal of Building Engineering, 42, 42 102468. doi:10.1016/j.jobe.2021.102468.
Gallo, W. W. C., Gabbianelli, G., & Monteiro, R. (2021). Assessment of Multi-Criteria Evaluation Procedures for Identification of Optimal Seismic Retrofitting Strategies for Existing RC Buildings. Journal of Earthquake Engineering, 1–34. doi:10.1080/13632469.2021.1878074.
Mazza, F., & Vulcano, A. (2012). Effects of near-fault ground motions on the nonlinear dynamic response of base-isolated r.c. framed buildings. Earthquake Engineering and Structural Dynamics, 41(2), 211–232. doi:10.1002/eqe.1126.
Mander, J. B., Priestley, M. J. N., & Park, R. (1988). Theoretical Stress‐Strain Model for Confined Concrete. Journal of Structural Engineering, 114(8), 1804–1826. doi:10.1061/(asce)0733-9445(1988)114:8(1804).
Kolozvari, K., Orakcal, K., & Wallace, J. W. (2015). Shear-flexure interaction modeling for reinforced concrete structural walls and columns under reversed cyclic loading. Pacific Earthquake Engineering Research Center, PEER Report, University of California, Berkeley, United States.
PEER. (2010). PEER Strong Motion Database. University of California, Berkeley, United States. Available online: https://peer.berkeley.edu/peer-strong-ground-motion-databases (accessed on January 2022).
Wu, H., Wang, Q., Tiwari, N. D., & De Domenico, D. (2021). Comparison of Dynamic Responses of Parallel-Placed Adjacent High-Rise Buildings under Wind and Earthquake Excitations. Shock and Vibration, 2021, 6644158. doi:10.1155/2021/6644158.
Rahgozar, N., Rahgozar, N., & Moghadam, A. S. (2019). Equivalent linear model for fully self-centering earthquake-resisting systems. Structural Design of Tall and Special Buildings, 28(1), 28 1565. doi:10.1002/tal.1565.
Turkish Seismic Hazard Map. (2022). Ministry of Interior, Disaster and Emergency Management Authority (AFAD). Istanbul, Turkey. Available online: https://deprem.afad.gov.tr/deprem-tehlike-haritasi?lang=en (accessed on January 2022).
Gerami, M., Mashayekhi, A. H., & Siahpolo, N. (2017). Computation of R factor for Steel Moment Frames by Using Conventional and Adaptive Pushover Methods. Arabian Journal for Science and Engineering, 42(3), 1025–1037. doi:10.1007/s13369-016-2257-5.
Amirsardari, A., Lumantarna, E., Rajeev, P., & Goldsworthy, H. M. (2020). Seismic Fragility Assessment of Non-ductile Reinforced Concrete Buildings in Australia. Journal of Earthquake Engineering, 1–34. doi:10.1080/13632469.2020.1750508.
DOI: 10.28991/CEJ-2022-08-03-011
Refbacks
- There are currently no refbacks.
Copyright (c) 2022 Orhan Ilkay Ergunes, Tulay Aksu Ozkul

This work is licensed under a Creative Commons Attribution 4.0 International License.