Durability and Microstructure Characteristics of Concrete with Supplementary Cementitious Materials
Abstract
Doi: 10.28991/CEJ-2022-08-04-05
Full Text: PDF
Keywords
References
Giergiczny, Z. (2019). Fly ash and slag. Cement and Concrete Research, 124, 105826. doi:10.1016/j.cemconres.2019.105826.
Gade, P., Chari Kanneganti, J. B., & Vummaneni, R. R. (2020). Durability study on multiple grades of concrete with terinary blend supplementary cementitious materials. Materials Today: Proceedings, 33, 925–933. doi:10.1016/j.matpr.2020.06.452.
Pal, S. ., Mukherjee, A., & Pathak, S. (2003). Investigation of hydraulic activity of ground granulated blast furnace slag in concrete. Cement and Concrete Research, 33(9), 1481–1486. doi:10.1016/s0008-8846(03)00062-0.
Olivia, M., & Nikraz, H. R. (2011). Corrosion performance of embedded steel in fly ash geopolymer concrete by impressed voltage method. Incorporating Sustainable Practice in Mechanics of Structures and Materials - Proceedings of the 21st Australian Conference on the Mechanics of Structures and Materials, 781–786. doi:10.1201/b10571-141.
Golewski, G. L. (2020). Energy Savings Associated with the Use of Fly Ash and Nan additives in the Cement Composition. Energies, 13(9), 2184. doi:10.3390/en13092184.
Joshi, G., & Pitroda, J. R. (2018). Evaluation of Sorptivity and Water Captivation of Concrete with Partial Replacement of Cement by Hypo Sludge. IOP Conference Series: Materials Science and Engineering, 431, 032010. doi:10.1088/1757-899x/431/3/032010.
Gopalan, M. K. (1996). Sorptivity of fly ash concretes. Cement and Concrete Research, 26(8), 1189–1197. doi:10.1016/0008-8846(96)00105-6.
Kubissa, W., & Jaskulski, R. (2013). Measuring and time variability of the sorptivity of concrete. Procedia Engineering, 57(June), 634–641. doi:10.1016/j.proeng.2013.04.080.
Sasui, S., Kim, G., Nam, J., Koyama, T., & Chansomsak, S. (2020). Strength and microstructure of class-C fly ash and GGBS blend geopolymer activated in NaOH & NaOH + Na2SiO3. Materials, 13(1). doi:10.3390/ma13010059.
Bureau of Indian Standards (BIS), IS-12089. (1987). Specification for granulated slag for the manufacture of Portland slag cement, New Delhi, India.
Bureau of Indian Standards (BIS), IS-3812-1. (2013). Specification for Pulverized Fuel Ash, Part 1: For Use as Pozzolana in Cement, Cement Mortar and Concrete. Bur. Indian Stand. New Delhi, India.
Bureau of Indian Standards (BIS), IS-56. (2000). Concrete, Plain and Reinforced. Bur. Indian Stand. New Delhi, India.
Bureau of Indian Standards (BIS), IS-9103. (1999). Specification for Concrete Admixtures BIS. New Delhi, India.
ASTM C-1202. (2012). Standard Test Method for Electrical Indication of Concrete’s Ability to Resist Chloride Ion Penetration. American Society for Testing and Materials, 1–8. doi:10.1520/C1202-12.2.
Abouhussien, A. A., & Hassan, A. A. A. (2014). Experimental and Empirical Time to Corrosion of Reinforced Concrete Structures under Different Curing Conditions. Advances in Civil Engineering, 2014, 1–9. doi:10.1155/2014/595743.
Afroz, S., Rahman, F., Iffat, S., & Manzur, T. (2015). Sorptivity and Strength Characteristics of Commonly Used Concrete Mixes of Bangladesh. In International Conference on Recent Innovation in Civil Engineering for Sustainable Development, 39–44.
Trejo, D., Halmen, C., & Reinschmidt, K. (2009). Corrosion performance tests for reinforcing steel in concrete: Technical Report (No. FHWA/TX-09/0-4825-1). Texas Transportation Institute, Texas, United States.
Saludung, A., Ogawa, Y., & Kawai, K. (2018). Microstructure and mechanical properties of FA/GGBS-based geopolymer. In MATEC Web of Conferences (Vol. 195, p. 01013). EDP Sciences. https://doi.org/10.1051/matecconf/201819501013.
Rizki Abdila, S., Mustafa Al Bakri Abdullah, M., Faheem Mohd Tahir, M., Ahmad, R., Syafwandi, & Isradi, M. (2020). Characterization of Fly ash and Ground Granulated Blast Slag for Soil Stabilization Application Using Geopolymerization Method. IOP Conference Series: Materials Science and Engineering, 864(1). doi:10.1088/1757-899X/864/1/012013.
Hasan, Z. A., Abdulridha, S. Q., & Abeer, S. Z. (2021). Sustainable Mortar Made with Local Clay Bricks and Glass Waste Exposed to Elevated Temperatures. Civil Engineering Journal, 7(8), 1341–1354. doi:10.28991/cej-2021-03091729.
Das, M., & Mishra, S. P. (2020). Parametric Strategy for Composite Cement Concrete Blended with Fly Ash & Glass Fiber. Current Journal of Applied Science and Technology, 162–176. doi:10.9734/cjast/2020/v39i3531065.
Raza, A., Ali, B., Haq, F. U., Awais, M., & Jameel, M. S. (2021). Influence of fly ash, glass fibers and wastewater on production of recycled aggregate concrete. Materiales de Construccion, 71(343), 253. doi:10.3989/MC.2021.15120.
Memon, M. A., Memon, N. A., & Memon, B. A. (2020). Effect of Fly Ash and Un-crushed Coarse Aggregates on Characteristics of SCC. Civil Engineering Journal, 6(4), 693–701. doi:10.28991/cej-2020-03091501.
Gade, P., Chari Kanneganti, J. B., & Vummaneni, R. R. (2020). Durability study on multiple grades of concrete with terinary blend supplementary cementitious materials. Materials Today: Proceedings, 33, 925–933. doi:10.1016/j.matpr.2020.06.452.
Sáez Del Bosque, I. F., Sánchez de Rojas, M. I., Medina, G., Barcala, S., & Medina, C. (2021). Durability of ternary cements based on new supplementary cementitious materials from industrial waste. Applied Sciences (Switzerland), 11(13), 5977. doi:10.3390/app11135977.
DOI: 10.28991/CEJ-2022-08-04-05
Refbacks
- There are currently no refbacks.
Copyright (c) 2022 Jyothishya Brahma Chari Kanneganti, Ranga Rao Vummaneni
This work is licensed under a Creative Commons Attribution 4.0 International License.