Novel Method for an Optimised Calculation of the Cross-Sectional Distribution of Live Loads on Girder Bridge Decks

Alvaro Gaute-Alonso, David Garcia-Sanchez, Iñigo Calderon Uriszar-Aldaca, Claudio Lopez Castillo

Abstract


One of the main goals in the design of girder bridge deck systems is to determine the cross-sectional distribution of live loads across the different girders that make up the cross-section of the deck. Structural grillage models and current bridge design standards based on a Load Distribution Factor (LDF) provide oversized designs, as demonstrated in this paper. This research introduces a novel method that allows the cross-sectional distribution of live loads on girder bridge decks to be calculated by applying a matrix formulation that reduces the structural problem to 2 degrees of freedom for each girder: the deflection and the rotation of the deck-slab at the centre of the girder’s span. Subsequently, a parametric study is presented that analyses the structural response of 64 girder bridge decks to a total of 384 load states. In addition, the authors compare the outputs of the novel method with those obtained using traditional grillage calculation methods. Finally, the method is experimentally validated on two levels: a) a laboratory test that analyses the structural response of a small-scale girder bridge deck to the application of different load states; b) a real full-scale girder bridge load test that analyses the structural response of the bridge over the Barbate River during its static load test. Based on this analysis, the maximum divergence of the proposed method obtained from the experimental structural response is less than 10%. The use of the proposed novel analysis method undoubtedly provides significant savings in material resources and computing time, while contributing to minimizing overall costs.

 

Doi: 10.28991/CEJ-2022-08-03-01

Full Text: PDF


Keywords


Cross-Sectional Load Distribution; Girder Bridge Decks; Small-Scale Bridge Test; Full-Scale Girder Bridge Deck Load Test; Optimised Matrix Method.

References


Ahsan, R., Rana, S., & Ghani, S. N. (2012). Cost Optimum Design of Posttensioned I-Girder Bridge Using Global Optimization Algorithm. Journal of Structural Engineering, 138(2), 273–284. doi:10.1061/(asce)st.1943-541x.0000458.

Rombouts, J., Lombaert, G., De Laet, L., & Schevenels, M. (2019). A novel shape optimization approach for strained gridshells: Design and construction of a simply supported gridshell. Engineering Structures, 192, 166–180. doi:10.1016/j.engstruct.2019.04.101.

Veenendaal, D., & Block, P. (2012). An overview and comparison of structural form finding methods for general networks. International Journal of Solids and Structures, 49(26), 3741–3753. doi:10.1016/j.ijsolstr.2012.08.008.

Shi, J. X. (2019). Application of t-beam grillage model in reconstruction design of dangerous bridge. Proceedings - 2019 4th International Conference on Mechanical, Control and Computer Engineering, ICMCCE 2019, 830–832. doi:10.1109/ICMCCE48743.2019.00190.

Connor, R. J., & Fisher, J. W. (2006). Consistent Approach to Calculating Stresses for Fatigue Design of Welded Rib-to-Web Connections in Steel Orthotropic Bridge Decks. Journal of Bridge Engineering, 11(5), 517–525. doi:10.1061/(asce)1084-0702(2006)11:5(517)

Ekholm, K., Crocetti, R., & Kliger, R. (2013). Stress-Laminated Timber Decks Subjected to Eccentric Loads in the Ultimate Limit State. Journal of Bridge Engineering, 18(5), 409–416. doi:10.1061/(asce)be.1943-5592.0000375.

Zhou, Y., & Ji, Y. (2017). Comparison and analysis of the results of grillage method and single beam method to continuous box girder with variable width. 4th International Conference on Transportation Information and Safety, ICTIS 2017 - Proceedings, 1118–1121. doi:10.1109/ICTIS.2017.8047910.

Gheitasi, A., & Harris, D. K. (2015). Overload Flexural Distribution Behavior of Composite Steel Girder Bridges. Journal of Bridge Engineering, 20(5), 04014076. doi:10.1061/(asce)be.1943-5592.0000671.

Hess, S., Filosa, F., Ross, B. E., & Cousins, T. E. (2020). Live Load Testing of NEXT-D Bridges to Determine Distribution Factors for Moment. Journal of Performance of Constructed Facilities, 34(4), 04020063. doi:10.1061/(asce)cf.1943-5509.0001452.

Huang, J., & Davis, J. (2018). Live Load Distribution Factors for Moment in NEXT Beam Bridges. Journal of Bridge Engineering, 23(3), 06017010. doi:10.1061/(asce)be.1943-5592.0001202.

Semendary, A. A., Steinberg, E. P., Walsh, K. K., & Barnard, E. (2017). Live-Load Moment-Distribution Factors for an Adjacent Precast Prestressed Concrete Box Beam Bridge with Reinforced UHPC Shear Key Connections. Journal of Bridge Engineering, 22(11), 04017088. doi:10.1061/(asce)be.1943-5592.0001127.

Kong, S., Zhuang, L., Tao, M., & Fan, J. (2020). Load distribution factor for moment of composite bridges with multi-box girders. Engineering Structures, 215, 110716–1 19. doi:10.1016/j.engstruct.2020.110716.

Terzioglu, T., Hueste, M. B. D., & Mander, J. B. (2017). Live Load Distribution Factors for Spread Slab Beam Bridges. Journal of Bridge Engineering, 22(10), 04017067. doi:10.1061/(asce)be.1943-5592.0001100.

Kim, Y. J., Tanovic, R., & Wight, R. G. (2010). Load Configuration and Lateral Distribution of NATO Wheeled Military Trucks for Steel I-Girder Bridges. Journal of Bridge Engineering, 15(6), 740–748. doi:10.1061/(asce)be.1943-5592.0000113.

Faith Yalcin, O., & Dicleli, M. (2013). Comparative study on the effect of number of girders on live load distribution in integral abutment and simply supported bridge girders. Advances in Structural Engineering, 16(6), 1011–1034. doi:10.1260/1369-4332.16.6.1011.

Harris, D. K. (2010). Assessment of flexural lateral load distribution methodologies for stringer bridges. Engineering Structures, 32(11), 3443–3451. doi:10.1016/j.engstruct.2010.06.008.

EHE – 08. (2010). Effective width of the flange in linear parts. Structural Concrete Instruction, Ministry of Public Works, Government of Spain. Available online: https://www.mitma.gob.es/recursos_mfom/1820100.pdf (accessed on December 2021).

RPX – 95. (2003). Recommendations for the Road Compound Bridges Project (RPX-95). Ministry of Public Works, Government of Spain. Available online: https://normativadecarreteras.com/listing/recomendaciones-para-el-proyecto-de-puentes-mixtos-para-carreteras-rpx-95/ (accessed on December 2021).

AASHTO. (1931). Standard specifications for highway bridges, First Edition. American Association of State Highway Officials, Washington, DC, United States.

Dwairi, H., Al-Hattamleh, O., & Al-Qablan, H. (2019). Evaluation of live-load distribution factors for high-performance prestressed concrete girder bridges. Bridge Structures, 15(1–2), 15–26. doi:10.3233/BRS-190149.

Torres, V., Zolghadri, N., Maguire, M., Barr, P., & Halling, M. (2019). Experimental and Analytical Investigation of Live-Load Distribution Factors for Double Tee Bridges. Journal of Performance of Constructed Facilities, 33(1), 04018107. doi:10.1061/(asce)cf.1943-5509.0001259.

Razzaq, M. K., Sennah, K., & Ghrib, F. (2021). Live load distribution factors for simply-supported composite steel I-girder bridges. Journal of Constructional Steel Research, 181, 106612. doi:10.1016/j.jcsr.2021.106612.

Baker, W. F., Beghini, L. L., Mazurek, A., Carrion, J., & Beghini, A. (2013). Maxwell’s reciprocal diagrams and discrete Michell frames. Structural and Multidisciplinary Optimization, 48(2), 267–277. doi:10.1007/s00158-013-0910-0.

Dally, James W., William F. Riley, and A. S. Kobayashi. (1978). Experimental stress analysis. McGraw Hill, New York, United States.

Zhou, K., & Wu, Z. Y. (2017). Strain gauge placement optimization for structural performance assessment. Engineering Structures, 141, 184–197. doi:10.1016/j.engstruct.2017.03.031.

Iriarte, X., Aginaga, J., Gainza, G., Ros, J., & Bacaicoa, J. (2021). Optimal strain-gauge placement for mechanical load estimation in circular cross-section shafts. Measurement: Journal of the International Measurement Confederation, 174. doi:10.1016/j.measurement.2020.108938.

Hoffmann, K. (2012). An introduction to stress analysis and transducer design using strain gauges. HBM, Darmstadt, Germany.

Ministry of Public Works. (1999). Recommendations for carrying out reception load tests on road bridges. General Directorate of Highways. Government of Spain. Available online: https://www.mitma.es/recursos_mfom/0850100.pdf (accessed on February 2022).

Kuang, Y., & Ou, J. (2008). Self-repairing performance of concrete beams strengthened using superelastic SMA wires in combination with adhesives released from hollow fibers. Smart Materials and Structures, 17(2). doi:10.1088/0964-1726/17/2/025020.

Ghani, S. N. (1989). A versatile algorithm for optimization of a nonlinear non-differentiable constrained objective function. UKAEA Harwell Rep. No. R, 13714.

Hassanain, M. A., & Loov, R. E. (2003). Cost optimization of concrete bridge infrastructure. Canadian Journal of Civil Engineering, 30(5), 841–849. doi:10.1139/l03-045.

Jones, H. L. (1985). Minimum Cost Prestressed Concrete Beam Design. Journal of Structural Engineering, 111(11), 2464–2478. doi:10.1061/(asce)0733-9445(1985)111:11(2464).


Full Text: PDF

DOI: 10.28991/CEJ-2022-08-03-01

Refbacks

  • There are currently no refbacks.




Copyright (c) 2022 Álvaro Gaute-Alonso, David Garcia-Sanchez, Iñigo Calderon-Uriszar-Aldaca, Claudio Lopez Castillo

Creative Commons License
This work is licensed under a Creative Commons Attribution 4.0 International License.
x
Message