Effect of Liquefaction Induced Lateral Spreading on Seismic Performance of Pile Foundations
Abstract
Doi: 10.28991/CEJ-SP2021-07-05
Full Text: PDF
Keywords
References
Abdoun, T., & Dobry, R. (2002). Evaluation of pile foundation response to lateral spreading. Soil Dynamics and Earthquake Engineering, 22(9–12), 1051–1058. doi:10.1016/S0267-7261(02)00130-6.
Kaur, A., Singh, H., & Jha, J. N. (2021). Numerical Study of Laterally Loaded Piles in Soft Clay Overlying Dense Sand. Civil Engineering Journal, 7(4), 730–746. doi:10.28991/cej-2021-03091686.
Abdoun, T., Dobry, R., O’Rourke, T. D., & Goh, S. H. (2003). Pile Response to Lateral Spreads: Centrifuge Modeling. Journal of Geotechnical and Geoenvironmental Engineering, 129(10), 869–878. doi:10.1061/(asce)1090-0241(2003)129:10(869).
Finn, W. D. L., & Fujita, N. (2002). Piles in liquefiable soils: Seismic analysis and design issues. Soil Dynamics and Earthquake Engineering, 22(9–12), 731–742. doi:10.1016/S0267-7261(02)00094-5.
Liu, L., & Dobry, R. (1995). Effect of Liquefaction on Lateral Response of Piles by Centrifuge Model Tests. In NCEER Bulletin, Issue January, 7–11. Available online: https://rosap.ntl.bts.gov/view/dot/13895 (accessed on December 2021)
Nesrine, G., Djarir, Y., Khelifa, A., & Tayeb, B. (2021). Performance Assessment of Interaction Soil Pile Structure Using the Fragility Methodology. Civil Engineering Journal, 7(2), 376–398. doi:10.28991/cej-2021-03091660.
Hamada, M., & O’Rourke, T. D. (1992). Case studies of liquefaction and lifeline performance during past earthquakes. Volume 1, Japanese Case Studies. Technical Rep. NCEER-92, 1, 1-28.
Mizuno, H., & Iiba, M. (1982). Shaking table testing of seismic building-pile-soil interaction. In Proceeding of 8th World Conf. Earthquake Engineering, 649–656. San Francisco, United States.
Phanikanth, V. S., Choudhury, D., & Reddy, G. R. (2013). Behavior of Single Pile in Liquefied Deposits during Earthquakes. International Journal of Geomechanics, 13(4), 454–462. doi:10.1061/(asce)gm.1943-5622.0000224.
Tamura, S., & Tokimatsu, K. (2006). Seismic earth pressure acting on embedded footing based on large-scale shaking table tests. In Seismic performance and simulation of pile foundations in liquefied and laterally spreading ground, 83-96. doi: 10.1061/40822(184)8.
TOKIMATSU, K., & ASAKA, Y. (1998). Effects of Liquefaction-Induced Ground Displacements on Pile Performance in the 1995 Hyogoken-Nambu Earthquake. Soils and Foundations, 38(Special), 163–177. doi:10.3208/sandf.38.special_163.
Xu, R., & Fatahi, B. (2018). Effects of Pile Group Configuration on the Seismic Response of Buildings Considering Soil-Pile-Structure Interaction. In Q. T., T. B., & Z. Z (Eds.), Proceedings of GeoShanghai 2018 International Conference: Advances in Soil Dynamics and Foundation Engineering (pp. 279–287). Springer. doi:10.1007/978-981-13-0131-5_31.
Russo, G., Marone, G., & Di Girolamo, L. (2021). Hybrid Energy Piles as a Smart and Sustainable Foundation. Journal of Human, Earth, and Future, 2(3), 306–322. doi:10.28991/hef-2021-02-03-010.
Kwon, S. Y., & Yoo, M. (2020). Study on the dynamic soil-pile-structure interactive behavior in liquefiable sand by 3D numerical simulation. Applied Sciences (Switzerland), 10(8), 2723. doi:10.3390/APP10082723.
Choudhury, D., Chatterjee, K., Kumar, A., & Phule, R. R. (2014). Pile Foundations during Earthquakes in Liquefiable Soils – Theory to Practice. 15th Symposium on Earthquake Engineering, 327–342. doi:10.13140/2.1.3796.3847.
Lu, X., Mengen, S., & Wang, P. (2019). Numerical simulation of the composite foundation of cement soil mixing piles using FLAC3D. Cluster Computing, 22, 7965–7974. doi:10.1007/s10586-017-1544-6.
Khalil, M. M., Hassan, A. M., & Elmamlouk, H. H. (2019). Dynamic behavior of pile foundations under vertical and lateral vibrations. HBRC Journal, 15(1), 55–71. doi:10.1080/16874048.2019.1676022.
Nguyen, B. N., Tran, N. X., Han, J. T., & Kim, S. R. (2018). Evaluation of the dynamic p–y p loops of pile-supported structures on sloping ground. Bulletin of Earthquake Engineering, 16(12), 5821–5842. doi:10.1007/s10518-018-0428-3.
Basavanagowda, G. M., Gowthami, P., Dinesh, S. V., Govindaraju, L., & Balareddy, S. M. (2021). Behavior of Pile Group in Liquefied Soil Deposits Under Earthquake Loadings. Lecture Notes in Civil Engineering, 120 LNCE, 139–150. doi:10.1007/978-981-33-4005-3_11.
Jahed Orang, M., Motamed, R., Prabhakaran, A., & Elgamal, A. (2021). Large-Scale Shake Table Tests on a Shallow Foundation in Liquefiable Soils. Journal of Geotechnical and Geoenvironmental Engineering, 147(1), 04020152. doi:10.1061/(asce)gt.1943-5606.0002427.
Huded, P.M., Dash, S.R., Bhattacharya, S. (2022). Buckling analysis of pile foundation in liquefiable soil deposit with sandwiched non-liquefiable layer. Soil Dynamics and Earthquake Engineering, 154, 107133. doi:10.1016/j.soildyn.2021.107133.
López Jiménez, G. A., Dias, D., & Jenck, O. (2019). Effect of the soil–pile–structure interaction in seismic analysis: case of liquefiable soils. Acta Geotechnica, 14(5), 1509–1525. doi:10.1007/s11440-018-0746-2.
Hussein, A. F., & El Naggar, M. H. (2022). Seismic behaviour of piles in non-liquefiable and liquefiable soil. Bulletin of Earthquake Engineering, 20(1), 77–111. doi:10.1007/s10518-021-01244-4.
Japanese Road Association (JRA). (1996). “ Seismic design specifications of highway bridges”, Japanese Road Association, in Earthquake Resistant Design Codes in Japan, Japan Society of Civil Engineers, Tokyo, Japan.
Bhattacharya, S., Bolton, M. D., & Madabhushi, S. P. G. (2005). A reconsideration of the safety of piled bridge foundations in liquefiable soils. Soils and Foundations, 45(4), 13–25. doi:10.3208/sandf.45.4_13.
Chavan, D., Sitharam, T. G., & Anbazhagan, P. (2022). Site response analysis of liquefiable soil employing continuous wavelet transforms. Geotechnique Letters, 12(1), 1–11. doi:10.1680/jgele.21.00091.
FLAC3D. (2022). Fast Lagrangian Analysis of Continuum's version 5.0. Itasca Consulting Group, Minneapolis, Minnesota, United States.
Byrne, M. P. (1991). A cyclic shear-volume coupling and pore pressure model for sand. Second International Conference on Recent Advances in Geotechnical Engineering and Soil Dynamics, 47–55. University of Missouri, Missouri, United States.
Bowles, J.E. (2001) Foundation Analysis and Design. 5th Edition, McGraw-Hill Companies Inc., Singapore.
DOI: 10.28991/CEJ-SP2021-07-05
Refbacks
Copyright (c) 2021 Basavana gowda G M, Dinesh S V, Govindaraju L, Ramesh Babu R
This work is licensed under a Creative Commons Attribution 4.0 International License.