Effect of Liquefaction Induced Lateral Spreading on Seismic Performance of Pile Foundations
Downloads
Doi: 10.28991/CEJ-SP2021-07-05
Full Text: PDF
Downloads
[2] Kaur, A., Singh, H., & Jha, J. N. (2021). Numerical Study of Laterally Loaded Piles in Soft Clay Overlying Dense Sand. Civil Engineering Journal, 7(4), 730–746. doi:10.28991/cej-2021-03091686.
[3] Abdoun, T., Dobry, R., O'Rourke, T. D., & Goh, S. H. (2003). Pile Response to Lateral Spreads: Centrifuge Modeling. Journal of Geotechnical and Geoenvironmental Engineering, 129(10), 869–878. doi:10.1061/(asce)1090-0241(2003)129:10(869).
[4] Finn, W. D. L., & Fujita, N. (2002). Piles in liquefiable soils: Seismic analysis and design issues. Soil Dynamics and Earthquake Engineering, 22(9–12), 731–742. doi:10.1016/S0267-7261(02)00094-5.
[5] Liu, L., & Dobry, R. (1995). Effect of Liquefaction on Lateral Response of Piles by Centrifuge Model Tests. In NCEER Bulletin, Issue January, 7–11. Available online: https://rosap.ntl.bts.gov/view/dot/13895 (accessed on December 2021)
[6] Nesrine, G., Djarir, Y., Khelifa, A., & Tayeb, B. (2021). Performance Assessment of Interaction Soil Pile Structure Using the Fragility Methodology. Civil Engineering Journal, 7(2), 376–398. doi:10.28991/cej-2021-03091660.
[7] Hamada, M., & O'Rourke, T. D. (1992). Case studies of liquefaction and lifeline performance during past earthquakes. Volume 1, Japanese Case Studies. Technical Rep. NCEER-92, 1, 1-28.
[8] Mizuno, H., & Iiba, M. (1982). Shaking table testing of seismic building-pile-soil interaction. In Proceeding of 8th World Conf. Earthquake Engineering, 649–656. San Francisco, United States.
[9] Phanikanth, V. S., Choudhury, D., & Reddy, G. R. (2013). Behavior of Single Pile in Liquefied Deposits during Earthquakes. International Journal of Geomechanics, 13(4), 454–462. doi:10.1061/(asce)gm.1943-5622.0000224.
[10] Tamura, S., & Tokimatsu, K. (2006). Seismic earth pressure acting on embedded footing based on large-scale shaking table tests. In Seismic performance and simulation of pile foundations in liquefied and laterally spreading ground, 83-96. doi: 10.1061/40822(184)8.
[11] TOKIMATSU, K., & ASAKA, Y. (1998). Effects of Liquefaction-Induced Ground Displacements on Pile Performance in the 1995 Hyogoken-Nambu Earthquake. Soils and Foundations, 38(Special), 163–177. doi:10.3208/sandf.38.special_163.
[12] Xu, R., & Fatahi, B. (2018). Effects of Pile Group Configuration on the Seismic Response of Buildings Considering Soil-Pile-Structure Interaction. In Q. T., T. B., & Z. Z (Eds.), Proceedings of GeoShanghai 2018 International Conference: Advances in Soil Dynamics and Foundation Engineering (pp. 279–287). Springer. doi:10.1007/978-981-13-0131-5_31.
[13] Russo, G., Marone, G., & Di Girolamo, L. (2021). Hybrid Energy Piles as a Smart and Sustainable Foundation. Journal of Human, Earth, and Future, 2(3), 306–322. doi:10.28991/hef-2021-02-03-010.
[14] Kwon, S. Y., & Yoo, M. (2020). Study on the dynamic soil-pile-structure interactive behavior in liquefiable sand by 3D numerical simulation. Applied Sciences (Switzerland), 10(8), 2723. doi:10.3390/APP10082723.
[15] Choudhury, D., Chatterjee, K., Kumar, A., & Phule, R. R. (2014). Pile Foundations during Earthquakes in Liquefiable Soils – Theory to Practice. 15th Symposium on Earthquake Engineering, 327–342. doi:10.13140/2.1.3796.3847.
[16] Lu, X., Mengen, S., & Wang, P. (2019). Numerical simulation of the composite foundation of cement soil mixing piles using FLAC3D. Cluster Computing, 22, 7965–7974. doi:10.1007/s10586-017-1544-6.
[17] Khalil, M. M., Hassan, A. M., & Elmamlouk, H. H. (2019). Dynamic behavior of pile foundations under vertical and lateral vibrations. HBRC Journal, 15(1), 55–71. doi:10.1080/16874048.2019.1676022.
[18] Nguyen, B. N., Tran, N. X., Han, J. T., & Kim, S. R. (2018). Evaluation of the dynamic p–y p loops of pile-supported structures on sloping ground. Bulletin of Earthquake Engineering, 16(12), 5821–5842. doi:10.1007/s10518-018-0428-3.
[19] Basavanagowda, G. M., Gowthami, P., Dinesh, S. V., Govindaraju, L., & Balareddy, S. M. (2021). Behavior of Pile Group in Liquefied Soil Deposits Under Earthquake Loadings. Lecture Notes in Civil Engineering, 120 LNCE, 139–150. doi:10.1007/978-981-33-4005-3_11.
[20] Jahed Orang, M., Motamed, R., Prabhakaran, A., & Elgamal, A. (2021). Large-Scale Shake Table Tests on a Shallow Foundation in Liquefiable Soils. Journal of Geotechnical and Geoenvironmental Engineering, 147(1), 04020152. doi:10.1061/(asce)gt.1943-5606.0002427.
[21] Huded, P.M., Dash, S.R., Bhattacharya, S. (2022). Buckling analysis of pile foundation in liquefiable soil deposit with sandwiched non-liquefiable layer. Soil Dynamics and Earthquake Engineering, 154, 107133. doi:10.1016/j.soildyn.2021.107133.
[22] López Jiménez, G. A., Dias, D., & Jenck, O. (2019). Effect of the soil–pile–structure interaction in seismic analysis: case of liquefiable soils. Acta Geotechnica, 14(5), 1509–1525. doi:10.1007/s11440-018-0746-2.
[23] Hussein, A. F., & El Naggar, M. H. (2022). Seismic behaviour of piles in non-liquefiable and liquefiable soil. Bulletin of Earthquake Engineering, 20(1), 77–111. doi:10.1007/s10518-021-01244-4.
[24] Japanese Road Association (JRA). (1996). " Seismic design specifications of highway bridges”, Japanese Road Association, in Earthquake Resistant Design Codes in Japan, Japan Society of Civil Engineers, Tokyo, Japan.
[25] Bhattacharya, S., Bolton, M. D., & Madabhushi, S. P. G. (2005). A reconsideration of the safety of piled bridge foundations in liquefiable soils. Soils and Foundations, 45(4), 13–25. doi:10.3208/sandf.45.4_13.
[26] Chavan, D., Sitharam, T. G., & Anbazhagan, P. (2022). Site response analysis of liquefiable soil employing continuous wavelet transforms. Geotechnique Letters, 12(1), 1–11. doi:10.1680/jgele.21.00091.
[27] FLAC3D. (2022). Fast Lagrangian Analysis of Continuum's version 5.0. Itasca Consulting Group, Minneapolis, Minnesota, United States.
[28] Byrne, M. P. (1991). A cyclic shear-volume coupling and pore pressure model for sand. Second International Conference on Recent Advances in Geotechnical Engineering and Soil Dynamics, 47–55. University of Missouri, Missouri, United States.
[29] Bowles, J.E. (2001) Foundation Analysis and Design. 5th Edition, McGraw-Hill Companies Inc., Singapore.
- Authors retain all copyrights. It is noticeable that authors will not be forced to sign any copyright transfer agreements.
- This work (including HTML and PDF Files) is licensed under a Creative Commons Attribution 4.0 International License.