Influence of Natural Zeolite and Mineral additive on Bacterial Self-healing Concrete: A Review
Abstract
Doi: 10.28991/CEJ-2022-08-05-015
Full Text: PDF
Keywords
References
Alemayehu, E., & Lennartz, B. (2009). Virgin volcanic rocks: Kinetics and equilibrium studies for the adsorption of cadmium from water. Journal of Hazardous Materials, 169(1–3), 395–401. doi:10.1016/j.jhazmat.2009.03.109.
Arcoya, A., González, J. A., Travieso, N., & Seoane, X. L. (1994). Physicochemical and Catalytic Properties of a Modified Natural Clinoptilolite. Clay Minerals, 29(1), 123–131. doi:10.1180/claymin.1994.029.1.14.
Xie, J., Chen, W., Wang, J., Fang, C., Zhang, B., & Liu, F. (2019). Coupling effects of recycled aggregate and GGBS/metakaolin on physicochemical properties of geopolymer concrete. Construction and Building Materials, 226, 345–359. doi:10.1016/j.conbuildmat.2019.07.311.
Arcoya, A., González, J. A., Llabre, G., Seoane, X. L., & Travieso, N. (1996). Role of the countercations on the molecular sieve properties of a clinoptilolite. Microporous Materials, 7(1), 1–13. doi:10.1016/0927-6513(96)00022-3.
Leggo, P. J., Ledésert, B., & Christie, G. (2006). The role of clinoptilolite in organo-zeolitic-soil systems used for phytoremediation. Science of the Total Environment, 363(1-3), 1–10. doi:10.1016/j.scitotenv.2005.09.055
Papadopoulos, A., Kapetanios, E. G., & Loizidou, M. (1996). Studies on the use of clinoptilolite for ammonia removal from leachates. Journal of Environmental Science and Health - Part A Toxic/Hazardous Substances and Environmental Engineering, 31(1), 211–220. doi:10.1080/10934529609376352.
Saifee, S. N., Lad, D. M., & Juremalani, J. R. (2015). Critical appraisal on bacterial Concrete. IJRDO-Journal of Mechanical and Civil Engineering, 1(3), 10-14. doi:10.53555/mce.v1i3.532.
Mokhtar, N., Megat Johari, M. A., Tajarudin, H. A., Al-Gheethi, A. A., & Algaifi, H. A. (2021). A sustainable enhancement of bio-cement using immobilised Bacillus sphaericus: Optimization, microstructural properties, and techno-economic analysis for a cleaner production of bio-cementitious mortars. Journal of Cleaner Production, 318, 128470. doi:10.1016/j.jclepro.2021.128470
Nguyen, T. H., Ghorbel, E., Fares, H., & Cousture, A. (2019). Bacterial self-healing of concrete and durability assessment. Cement and Concrete Composites, 104, 103–340. doi:10.1016/j.cemconcomp.2019.103340.
Manikandan, A. T., & Padmavathi, A. (2015). An experimental investigation on improvement of concrete serviceability by using bacterial mineral precipitation. International Journal of Research and Scientific Innovation, 2(3), 46-49.
Hosseini Balam, N., Mostofinejad, D., & Eftekhar, M. (2017). Effects of bacterial remediation on compressive strength, water absorption, and chloride permeability of lightweight aggregate concrete. Construction and Building Materials, 145, 107–116. doi:10.1016/j.conbuildmat.2017.04.003.
Khushnood, R. A., Qureshi, Z. A., Shaheen, N., & Ali, S. (2020). Bio-mineralized self-healing recycled aggregate concrete for sustainable infrastructure. Science of the Total Environment, 703, 135007. doi:10.1016/j.scitotenv.2019.135007
Zhang, X., Fan, X., Li, M., Samia, A., & Yu, X. (Bill). (2021). Study on the behaviors of fungi-concrete surface interactions and theoretical assessment of its potentials for durable concrete with fungal-mediated self-healing. Journal of Cleaner Production, 292, 125870. doi:10.1016/j.jclepro.2021.125870.
Gao, M., Guo, J., Cao, H., Wang, H., Xiong, X., Krastev, R., … Liu, L. (2020). Immobilized bacteria with pH-response hydrogel for self-healing of concrete. Journal of Environmental Management, 261, 110225. doi:10.1016/j.jenvman.2020.110225
Xu, J., & Wang, X. (2018). Self-healing of concrete cracks by use of bacteria-containing low alkali cementitious material. Construction and Building Materials, 167, 1–14. doi:10.1016/j.conbuildmat.2018.02.020.
Jongvivatsakul, P., Janprasit, K., Nuaklong, P., Pungrasmi, W., & Likitlersuang, S. (2019). Investigation of the crack healing performance in mortar using microbially induced calcium carbonate precipitation (MICP) method. Construction and Building Materials, 212, 737–744. doi:10.1016/j.conbuildmat.2019.04.035.
Pungrasmi, W., Intarasoontron, J., Jongvivatsakul, P., & Likitlersuang, S. (2019). Evaluation of Microencapsulation Techniques for MICP Bacterial Spores Applied in Self-Healing Concrete. Scientific Reports, 9(1). doi:10.1038/s41598-019-49002-6.
Arpajirakul, S., Pungrasmi, W., & Likitlersuang, S. (2021). Efficiency of microbially-induced calcite precipitation in natural clays for ground improvement. Construction and Building Materials, 282, 122722. doi:10.1016/j.conbuildmat.2021.122722.
Akhtar, M. N., Akhtar, J., Hattamleh, O. H. Al, & Halahla, A. M. (2016). Sustainable Fly Ash Based Roof Tiles with Waste Polythene Fibre: An Experimental Study. Open Journal of Civil Engineering, 06(02), 314–327. doi:10.4236/ojce.2016.62026.
Siddiqui, S., Akhtar, M. N., Nejem, J. K., & Alnoumasi, M. S. (2021). Evaluating Public Services Delivery on Promoting Inclusive Growth for Inhabitants of Industrial Cities in Developing Countries. Civil Engineering Journal, 7(2), 208–225. doi:10.28991/cej-2021-03091648
Akhtar, M. N., Ibrahim, Z., Bunnori, N. M., Jameel, M., Tarannum, N., & Akhtar, J. N. (2021). Performance of sustainable sand concrete at ambient and elevated temperature. Construction and Building Materials, 280, 122404. doi:10.1016/j.conbuildmat.2021.122404.
Akhtar, J. N., Ahmad, T., Akhtar, M. N., & Abbas, H. (2014). Influence of Fibers and Fly Ash on Mechanical Properties of Concrete. American Journal of Civil Engineering and Architecture, 2(2), 64–69. doi:10.12691/ajcea-2-2-2.
Akhtar, J. N., & Akhtar, M. N. (2014). Enhancement in properties of concrete with demolished waste aggregate. GE-International Journal of Engineering Research, 2(9), 73-83.
Dai, Z., Tsangouri, E., Van Tittelboom, K., Zhu, X., & Gilabert, F. A. (2022). Understanding fracture mechanisms via validated virtual tests of encapsulation-based self-healing concrete beams. Materials and Design, 213, 110299. doi:10.1016/j.matdes.2021.110299.
Sharma, R., & Khan, R. A. (2021). Sulfate resistance of self-compacting concrete incorporating copper slag as fine aggregates with mineral admixtures. Construction and Building Materials, 287, 122985. doi:10.1016/j.conbuildmat.2021.122985.
Smith, J. V. (1980). (R.M.) Barrer. Zeolites and clay minerals as sorbents and molecular sieves. London and New York (Academic Press), Mineralogical Magazine, 43(330), 829–830. doi:10.1180/minmag.1980.043.330.29.
Kahani, M., Kalantary, F., Soudi, M. R., Pakdel, L., & Aghaalizadeh, S. (2020). Optimization of cost effective culture medium for Sporosarcina pasteurii as biocementing agent using response surface methodology: Up cycling dairy waste and seawater. Journal of Cleaner Production, 253, 120022. doi:10.1016/j.jclepro.2020.120022
Müller, M., Harvey, G., & Prins, R. (2000). Comparison of the dealumination of zeolites beta, mordenite, ZSM-5 and ferrierite by thermal treatment, leaching with oxalic acid and treatment with SiCl4 by 1H, 29Si and 27A1 MAS NMR. Microporous and Mesoporous Materials, 34(2), 135–147. doi:10.1016/S1387-1811(99)00167-5.
Elaiopoulos, K., Perraki, T., & Grigoropoulou, E. (2008). Mineralogical study and porosimetry measurements of zeolites from Scaloma area, Thrace, Greece. Microporous and Mesoporous Materials, 112(1–3), 441–449. doi:10.1016/j.micromeso.2007.10.021.
Coombs, D. S., Alberti, A., Armbruster, T., Artioli, G., Colella, C., Galli, E., … Vezzalini, G. (1998). Recommended nomenclature for zeolite minerals: report of the subcommittee on zeolites of the International Mineralogical Association, Commission on New Minerals and Mineral Names. Mineralogical Magazine, 62(4), 533–571. doi:10.1180/002646198547800.
Nagrockiene, D., & Girskas, G. (2016). Research into the properties of concrete modified with natural zeolite addition. Construction and Building Materials, 113, 964–969. doi:10.1016/j.conbuildmat.2016.03.133.
Markiv, T., Sobol, K., Franus, M., & Franus, W. (2016). Mechanical and durability properties of concretes incorporating natural zeolite. Archives of Civil and Mechanical Engineering, 16(4), 554–562. doi:10.1016/j.acme.2016.03.013.
Najimi, M., Sobhani, J., Ahmadi, B., & Shekarchi, M. (2012). An experimental study on durability properties of concrete containing zeolite as a highly reactive natural pozzolan. Construction and Building Materials, 35, 1023–1033. doi:10.1016/j.conbuildmat.2012.04.038.
Kurniawan, T., Muraza, O., Hakeem, A. S., & Al-Amer, A. M. (2017). Mechanochemical Route and Recrystallization Strategy to Fabricate Mordenite Nanoparticles from Natural Zeolites. Crystal Growth and Design, 17(6), 3313–3320. doi:10.1021/acs.cgd.7b00295.
Bowman, R. S. (2003). Applications of surfactant-modified zeolites to environmental remediation. Microporous and Mesoporous Materials, 61(1–3), 43–56. doi:10.1016/S1387-1811(03)00354-8.
Erdem, E., Karapinar, N., & Donat, R. (2004). The removal of heavy metal cations by natural zeolites. Journal of Colloid and Interface Science, 280(2), 309–314. doi:10.1016/j.jcis.2004.08.028.
Cruciani, G. (2006). Zeolites upon heating: Factors governing their thermal stability and structural changes. Journal of Physics and Chemistry of Solids, 67(9–10), 1973–1994. doi:10.1016/j.jpcs.2006.05.057.
Joseph, C. (2008). Experimental and numerical study of the fracture and self-healing of cementitious materials. PhD Thesis, School of Engineering, Cardiff University, Cardiff, United Kingdom.
Nishiwaki, T., Mihashi, H., Jang, B. K., & Miura, K. (2006). Development of self-healing system for concrete with selective heating around crack. Journal of Advanced Concrete Technology, 4(2), 267–275. doi:10.3151/jact.4.267.
Jafarnia, M. S., Khodadad Saryazdi, M., & Moshtaghioun, S. M. (2020). Use of bacteria for repairing cracks and improving properties of concrete containing limestone powder and natural zeolite. Construction and Building Materials, 242, 118059. doi:10.1016/j.conbuildmat.2020.118059.
Siddique, R., Jameel, A., Singh, M., Barnat-Hunek, D., Kunal, Aït-Mokhtar, A., Belarbi, R., & Rajor, A. (2017). Effect of bacteria on strength, permeation characteristics and micro-structure of silica fume concrete. Construction and Building Materials, 142, 92–100. doi:10.1016/j.conbuildmat.2017.03.057.
Alhalabi, Z. S., & Dopudja, D. (2017). Self-healing concrete: definition, mechanism and application in different types of structures. International research journal, 5-1, 59. (In Russian).
Şahmaran, M., Keskin, S. B., Ozerkan, G., & Yaman, I. O. (2008). Self-healing of mechanically-loaded self-consolidating concretes with high volumes of fly ash. Cement and Concrete Composites, 30(10), 872–879. doi:10.1016/j.cemconcomp.2008.07.001.
Parks, J., Edwards, M., Vikesland, P., & Dudi, A. (2010). Effects of Bulk Water Chemistry on Autogenous Healing of Concrete. Journal of Materials in Civil Engineering, 22(5), 515–524. doi:10.1061/(asce)mt.1943-5533.0000082.
Snoeck, D., Debaecke, S., & De Belie, N. (2014). Repeated autogenous healing in cementitious composites with microfibres and superabsorbent polymers. XIII International Conference on Durability of Building Materials and Components (XIII DBMC), 73-80, 2-5 September 2014, Sao Paulo, Brazil.
Huang, H., Ye, G., & Damidot, D. (2014). Effect of blast furnace slag on self-healing of microcracks in cementitious materials. Cement and Concrete Research, 60, 68–82. doi:10.1016/j.cemconres.2014.03.010.
Wang, J. Y., Snoeck, D., Van Vlierberghe, S., Verstraete, W., & De Belie, N. (2014). Application of hydrogel encapsulated carbonate precipitating bacteria for approaching a realistic self-healing in concrete. Construction and Building Materials, 68, 110–119. doi:10.1016/j.conbuildmat.2014.06.018.
Wang, J. Y., Soens, H., Verstraete, W., & De Belie, N. (2014). Self-healing concrete by use of microencapsulated bacterial spores. Cement and Concrete Research, 56, 139–152. doi:10.1016/j.cemconres.2013.11.009.
Qian, C. X., Luo, M., Ren, L. F., Wang, R. X., Li, R. Y., Pan, Q. F., & Chen, H. C. (2014). Self-Healing and Repairing Concrete Cracks Based on Bio-Mineralization. Key Engineering Materials, 629-630, 494–503. doi:10.4028/www.scientific.net/kem.629-630.494.
Stuckrath, C., Serpell, R., Valenzuela, L. M., & Lopez, M. (2014). Quantification of chemical and biological calcium carbonate precipitation: Performance of self-healing in reinforced mortar containing chemical admixtures. Cement and Concrete Composites, 50, 10–15. doi:10.1016/j.cemconcomp.2014.02.005.
Mostavi, E., Asadi, S., Hassan, M. M., & Alansari, M. (2015). Evaluation of Self-Healing Mechanisms in Concrete with Double-Walled Sodium Silicate Microcapsules. Journal of Materials in Civil Engineering, 27(12), 04015035. doi:10.1061/(asce)mt.1943-5533.0001314.
Achal, V., Mukerjee, A., & Sudhakara Reddy, M. (2013). Biogenic treatment improves the durability and remediates the cracks of concrete structures. Construction and Building Materials, 48, 1–5. doi:10.1016/j.conbuildmat.2013.06.061.
Luo, M., Qian, C. X., & Li, R. Y. (2015). Factors affecting crack repairing capacity of bacteria-based self-healing concrete. Construction and Building Materials, 87, 1–7. doi:10.1016/j.conbuildmat.2015.03.117.
Pang, B., Zhou, Z., Hou, P., Du, P., Zhang, L., & Xu, H. (2016). Autogenous and engineered healing mechanisms of carbonated steel slag aggregate in concrete. Construction and Building Materials, 107, 191–202. doi:10.1016/j.conbuildmat.2015.12.191.
Jonkers, H. M. (2007). Self-Healing Concrete: A Biological Approach. Self-Healing Material. Springer Series in Material Science, Springer, Dordrecht, Netherlands. doi:10.1007/978-1-4020-6250-6_9.
S. Krishnapriya, D.L. Venkatesh Babu, & Prince Arulraj G. (2015). Isolation and identification of bacteria to improve the strength of concrete. Microbiological Research, 174, 48–55. doi:10.1016/j.micres.2015.03.009.
Joshi, S., Goyal, S., Mukherjee, A., & Reddy, M. S. (2017). Microbial healing of cracks in concrete: a review. Journal of Industrial Microbiology and Biotechnology, 44(11), 1511–1525. doi:10.1007/s10295-017-1978-0.
Peckmann, J., Paul, J., & Thiel, V. (1999). Bacterially mediated formation of diagenetic aragonite and native sulfur in Zechstein carbonates (Upper Permian, Central Germany). Sedimentary Geology, 126(1–4), 205–222. doi:10.1016/S0037-0738(99)00041-X.
Lee, Y. S., & Park, W. (2018). Current challenges and future directions for bacterial self-healing concrete. Applied Microbiology and Biotechnology, 102(7), 3059–3070. doi:10.1007/s00253-018-8830-y.
Wiktor, V., & Jonkers, H. M. (2011). Quantification of crack-healing in novel bacteria-based self-healing concrete. Cement and Concrete Composites, 33(7), 763–770. doi:10.1016/j.cemconcomp.2011.03.012.
Castanier, S., Le Métayer-Levrel, G., & Perthuisot, J. P. (1999). Ca-carbonates precipitation and limestone genesis - the microbiogeologist point of view. Sedimentary Geology, 126(1–4), 9–23. doi:10.1016/S0037-0738(99)00028-7.
Stocks-Fischer, S., Galinat, J. K., & Bang, S. S. (1999). Microbiological precipitation of CaCO3. Soil Biology and Biochemistry, 31(11), 1563–1571. doi:10.1016/S0038-0717(99)00082-6.
Valipour, M., Pargar, F., Shekarchi, M., & Khani, S. (2013). Comparing a natural pozzolan, zeolite, to metakaolin and silica fume in terms of their effect on the durability characteristics of concrete: A laboratory study. Construction and Building Materials, 41, 879–888. doi:10.1016/j.conbuildmat.2012.11.054.
Bhaskar, S., Hossain, K. M. A., Lachemi, M., Wolfaardt, G., & Kroukamp, M. O. (2017). Effect of self-healing on strength and durability of zeolite-immobilized bacterial cementitious mortar composites. Cement and Concrete Composites, 82, 23-33. doi:10.1016/J.CEMCONCOMP.2017.05.013.
Sreeharsha, N., & Ramana, K. V. (2016). Study on the strength characteristics of concrete with partial replacement of cement by zeolite and metakaolin. International journal of innovative research in science, engineering and technology, 5(12), 20363-20371.
Khaliq, W., & Ehsan, M. B. (2016). Crack healing in concrete using various bio influenced self-healing techniques. Construction and Building Materials, 102, 349–357. doi:10.1016/j.conbuildmat.2015.11.006.
Rao, M., Reddy, V. S., Hafsa, M., Veena, P., & Anusha, P. (2013). Bioengineered concrete-a sustainable self-healing construction material. Research Journal of Engineering Science, 2(6), 45-51.
Andalib, R., Abd Majid, M. Z., Hussin, M. W., Ponraj, M., Keyvanfar, A., Mirza, J., & Lee, H. S. (2016). Optimum concentration of Bacillus megaterium for strengthening structural concrete. Construction and Building Materials, 118, 180–193. doi:10.1016/j.conbuildmat.2016.04.142.
Siddique, R., Singh, K., Kunal, P., Singh, M., Corinaldesi, V., & Rajor, A. (2016). Properties of bacterial rice husk ash concrete. Construction and Building Materials, 121, 112–119. doi:10.1016/j.conbuildmat.2016.05.146.
Wang, J. Y., Van Tittelboom, K., De Belie, N., & Verstraete, W. (2010, June). Potential of applying bacteria to heal cracks in concrete. 1-12, 2nd international conference on sustainable construction materials and technologies, June 28-30 2010, Ancone, Italy.
Gavimath, C. C., Mali, B. M., Hooli, V. R., Mallpur, J. D., Patil, A. B., Gaddi, D., ... & Ravishankera, B. E. (2012). Potential application of bacteria to improve the strength of cement concrete. International journal of advanced biotechnology and research, 3(1), 541-544.
Maheswaran, S., Dasuru, S. S., Murthy, A. R. C., Bhuvaneshwari, B., Kumar, V. R., Palani, G. S., ... & Sandhya, S. (2014). Strength improvement studies using new type wild strain Bacillus cereus on cement mortar. Current science, 50-57.
Moharir, R. V., & Kumar, S. (2019). Challenges associated with plastic waste disposal and allied microbial routes for its effective degradation: A comprehensive review. Journal of Cleaner Production, 208, 65–76. doi:10.1016/j.jclepro.2018.10.059
Chahal, N., Siddique, R., & Rajor, A. (2012). Influence of bacteria on the compressive strength, water absorption and rapid chloride permeability of fly ash concrete. Construction and Building Materials, 28(1), 351–356. doi:10.1016/j.conbuildmat.2011.07.042.
Ramakrishnan, V., Panchalan, R. K., Bang, S. S., & City, R. (2005, March). Improvement of concrete durability by bacterial mineral precipitation. 11, 357-367. 11th International Conference on Fracture (ICF11), 20-25 March 2005, Turin, Italy.
Siddique, R., Nanda, V., Kunal, Kadri, E. H., Iqbal Khan, M., Singh, M., & Rajor, A. (2016). Influence of bacteria on compressive strength and permeation properties of concrete made with cement baghouse filter dust. Construction and Building Materials, 106, 461–469. doi:10.1016/j.conbuildmat.2015.12.112.
Siddique, R., & Chahal, N. K. (2011). Effect of ureolytic bacteria on concrete properties. Construction and Building Materials, 25(10), 3791–3801. doi:10.1016/j.conbuildmat.2011.04.010.
Ghosh, P., Mandal, S., Chattopadhyay, B. D., & Pal, S. (2005). Use of microorganism to improve the strength of cement mortar. Cement and Concrete Research, 35(10), 1980–1983. doi:10.1016/j.cemconres.2005.03.005.
Nuruddin, M. F., Chang, K. Y., & Azmee, N. M. (2014). Workability and compressive strength of ductile self-compacting concrete (DSCC) with various cement replacement materials. Construction and Building Materials, 55, 153–157. doi:10.1016/j.conbuildmat.2013.12.094.
Jana, D. (2007, May). A new look to an old pozzolan, clinoptilolite–a promising pozzolan in concrete. 168-206, Proceedings of the 29th conference on cement microscopy, May 20-24 2007, Quebec City, Canada.
Subhashini, S., K.Yaswanth, K., & S.V.Prasad, D. (2018). Study on Strength and Durability Characteristics of Hybrid Fibre Reinforced Self-Healing Concrete. International Journal of Engineering & Technology, 7(4.2), 21. doi:10.14419/ijet.v7i4.2.19993.
Eskandari, H., Vaghefi, M., & Kowsari, K. (2015). Investigation of Mechanical and Durability Properties of Concrete Influenced by Hybrid Nano Silica and Micro Zeolite. Procedia Materials Science, 11, 594–599. doi:10.1016/j.mspro.2015.11.084.
Mohsen Zadeh, P., Saghravani, S. F., & Asadollahfardi, G. (2019). Mechanical and durability properties of concrete containing zeolite mixed with meta-kaolin and micro-nano bubbles of water. Structural Concrete, 20(2), 786–797. doi:10.1002/suco.201800030.
Toklu, K. (2021). Investigation of Mechanical and Durability Behaviour of High Strength Cementitious Composites Containing Natural Zeolite and Blast-furnace Slag. Silicon, 13(8), 2821–2833. doi:10.1007/s12633-020-00866-8.
Ahmadi, B., & Shekarchi, M. (2010). Use of natural zeolite as a supplementary cementitious material. Cement and Concrete Composites, 32(2), 134–141. doi:10.1016/j.cemconcomp.2009.10.006.
Nas, M., Kurbetci, S., & Nayir, S. (2018). Investigation on strength and durability properties of concrete containing zeolite. 12-14, 13th international congress on advances in civil engineering, 12-14 September 2018, Izmir, Turkey.
Vejmelková, E., Koňáková, D., Kulovaná, T., Keppert, M., Žumár, J., Rovnaníková, P., … Černý, R. (2015). Engineering properties of concrete containing natural zeolite as supplementary cementitious material: Strength, toughness, durability, and hygrothermal performance. Cement and Concrete Composites, 55, 259–267. doi:10.1016/j.cemconcomp.2014.09.013.
Effect of Bentonite and Zeolite on the Durability of the Cement Suspension under Sulphate Attack. (1998). ACI Materials Journal, 95(6). doi:10.14359/415.
Karakurt, C., & Topçu, İ. B. (2011). Effect of blended cements produced with natural zeolite and industrial by-products on alkali-silica reaction and sulfate resistance of concrete. Construction and Building Materials, 25(4), 1789-1795. doi:10.1016/j.conbuildmat.2010.11.087
Uzal, B., & Turanli, L. (2012). Blended cements containing high volume of natural zeolites: Properties, hydration and paste microstructure. Cement and Concrete Composites, 34(1), 101–109. doi:10.1016/j.cemconcomp.2011.08.009.
Bilim, C. (2011). Properties of cement mortars containing clinoptilolite as a supplementary cementitious material. Construction and Building Materials, 25(8), 3175–3180. doi:10.1016/j.conbuildmat.2011.02.006.
Krolo, P., Krstulović, R., Dabić, P., & Bubić, A. (2005). Hydration and leaching of the cement - Zeolite composite. Ceramics - Silikaty, 49(3), 213–219.
DOI: 10.28991/CEJ-2022-08-05-015
Refbacks
- There are currently no refbacks.
Copyright (c) 2022 Mohammad Nadeem Akhtar
This work is licensed under a Creative Commons Attribution 4.0 International License.