Influence of Natural Zeolite and Mineral additive on Bacterial Self-healing Concrete: A Review

J. N. Akhtar, Rizwan Ahmad Khan, Rehan Ahmad Khan, Mohammad Nadeem Akhtar, Jamal K. Nejem


With time, the development of micro-cracks in concrete is a frequently reported problem in the structures due to the ingress of harmful substances, leading to the degradation of its quality and strength, which ultimately declines the construction. The present work is a review paper based on enhancing the self-healing property of concrete by inducing different bacteria alone or incorporating different mineral additives. It has been seen that various rehabilitated methodologies are in queue to surmount concrete’s weaknesses and to increase its strength and durability. The latest methodology includes using non-pathogenic microbes in concrete as Microbial induced Calcium Carbonate Precipitation (MICCP). The property of precipitating calcium carbonate (CaCO3) crystals by their metabolic activities helps repair the cracks in harsh conditions and improve their strength. Ureolytic bacteria like Bacillus pasteurii/Sporosarcina pasteurii, Bacillus subtilis, Bacillus megaterium, etc., have a specific property by which they can excite urea when integrated with a calcium source and help in sealing the cracks by CaCO3 precipitation. Different studies have observed that specimens having a bacterial concentration of 105-107 cells/ml with Natural Zeolite (NZ) replacement (10%) represents better interaction of the microstructure of concrete because of the formation of calcium silicate hydrate (CSH) gel. Further, the reduction in CH bond with reduced pore space has also been observed. NZ alone enhances micro-structural property, but it shows CaCo3 precipitation and more densification of microstructure under bacterial combination. XRD also confirms an increase in the calcite composition when the bacterial concentration of 105-107 cells/ml is used. The overall properties of standard and high-strength bacterial concrete (105-107 cells/ml) with 10% Natural Zeolite replacement can provide a better option for the future of sustained and strong concrete.


Doi: 10.28991/CEJ-2022-08-05-015

Full Text: PDF


Micro-cracks; Bio-mineralization; Encapsulation; Self-healing Properties; Calcite Precipitation.


Alemayehu, E., & Lennartz, B. (2009). Virgin volcanic rocks: Kinetics and equilibrium studies for the adsorption of cadmium from water. Journal of Hazardous Materials, 169(1–3), 395–401. doi:10.1016/j.jhazmat.2009.03.109.

Arcoya, A., González, J. A., Travieso, N., & Seoane, X. L. (1994). Physicochemical and Catalytic Properties of a Modified Natural Clinoptilolite. Clay Minerals, 29(1), 123–131. doi:10.1180/claymin.1994.029.1.14.

Xie, J., Chen, W., Wang, J., Fang, C., Zhang, B., & Liu, F. (2019). Coupling effects of recycled aggregate and GGBS/metakaolin on physicochemical properties of geopolymer concrete. Construction and Building Materials, 226, 345–359. doi:10.1016/j.conbuildmat.2019.07.311.

Arcoya, A., González, J. A., Llabre, G., Seoane, X. L., & Travieso, N. (1996). Role of the countercations on the molecular sieve properties of a clinoptilolite. Microporous Materials, 7(1), 1–13. doi:10.1016/0927-6513(96)00022-3.

Leggo, P. J., Ledésert, B., & Christie, G. (2006). The role of clinoptilolite in organo-zeolitic-soil systems used for phytoremediation. Science of the Total Environment, 363(1-3), 1–10. doi:10.1016/j.scitotenv.2005.09.055

Papadopoulos, A., Kapetanios, E. G., & Loizidou, M. (1996). Studies on the use of clinoptilolite for ammonia removal from leachates. Journal of Environmental Science and Health - Part A Toxic/Hazardous Substances and Environmental Engineering, 31(1), 211–220. doi:10.1080/10934529609376352.

Saifee, S. N., Lad, D. M., & Juremalani, J. R. (2015). Critical appraisal on bacterial Concrete. IJRDO-Journal of Mechanical and Civil Engineering, 1(3), 10-14. doi:10.53555/mce.v1i3.532.

Mokhtar, N., Megat Johari, M. A., Tajarudin, H. A., Al-Gheethi, A. A., & Algaifi, H. A. (2021). A sustainable enhancement of bio-cement using immobilised Bacillus sphaericus: Optimization, microstructural properties, and techno-economic analysis for a cleaner production of bio-cementitious mortars. Journal of Cleaner Production, 318, 128470. doi:10.1016/j.jclepro.2021.128470

Nguyen, T. H., Ghorbel, E., Fares, H., & Cousture, A. (2019). Bacterial self-healing of concrete and durability assessment. Cement and Concrete Composites, 104, 103–340. doi:10.1016/j.cemconcomp.2019.103340.

Manikandan, A. T., & Padmavathi, A. (2015). An experimental investigation on improvement of concrete serviceability by using bacterial mineral precipitation. International Journal of Research and Scientific Innovation, 2(3), 46-49.

Hosseini Balam, N., Mostofinejad, D., & Eftekhar, M. (2017). Effects of bacterial remediation on compressive strength, water absorption, and chloride permeability of lightweight aggregate concrete. Construction and Building Materials, 145, 107–116. doi:10.1016/j.conbuildmat.2017.04.003.

Khushnood, R. A., Qureshi, Z. A., Shaheen, N., & Ali, S. (2020). Bio-mineralized self-healing recycled aggregate concrete for sustainable infrastructure. Science of the Total Environment, 703, 135007. doi:10.1016/j.scitotenv.2019.135007

Zhang, X., Fan, X., Li, M., Samia, A., & Yu, X. (Bill). (2021). Study on the behaviors of fungi-concrete surface interactions and theoretical assessment of its potentials for durable concrete with fungal-mediated self-healing. Journal of Cleaner Production, 292, 125870. doi:10.1016/j.jclepro.2021.125870.

Gao, M., Guo, J., Cao, H., Wang, H., Xiong, X., Krastev, R., … Liu, L. (2020). Immobilized bacteria with pH-response hydrogel for self-healing of concrete. Journal of Environmental Management, 261, 110225. doi:10.1016/j.jenvman.2020.110225

Xu, J., & Wang, X. (2018). Self-healing of concrete cracks by use of bacteria-containing low alkali cementitious material. Construction and Building Materials, 167, 1–14. doi:10.1016/j.conbuildmat.2018.02.020.

Jongvivatsakul, P., Janprasit, K., Nuaklong, P., Pungrasmi, W., & Likitlersuang, S. (2019). Investigation of the crack healing performance in mortar using microbially induced calcium carbonate precipitation (MICP) method. Construction and Building Materials, 212, 737–744. doi:10.1016/j.conbuildmat.2019.04.035.

Pungrasmi, W., Intarasoontron, J., Jongvivatsakul, P., & Likitlersuang, S. (2019). Evaluation of Microencapsulation Techniques for MICP Bacterial Spores Applied in Self-Healing Concrete. Scientific Reports, 9(1). doi:10.1038/s41598-019-49002-6.

Arpajirakul, S., Pungrasmi, W., & Likitlersuang, S. (2021). Efficiency of microbially-induced calcite precipitation in natural clays for ground improvement. Construction and Building Materials, 282, 122722. doi:10.1016/j.conbuildmat.2021.122722.

Akhtar, M. N., Akhtar, J., Hattamleh, O. H. Al, & Halahla, A. M. (2016). Sustainable Fly Ash Based Roof Tiles with Waste Polythene Fibre: An Experimental Study. Open Journal of Civil Engineering, 06(02), 314–327. doi:10.4236/ojce.2016.62026.

Siddiqui, S., Akhtar, M. N., Nejem, J. K., & Alnoumasi, M. S. (2021). Evaluating Public Services Delivery on Promoting Inclusive Growth for Inhabitants of Industrial Cities in Developing Countries. Civil Engineering Journal, 7(2), 208–225. doi:10.28991/cej-2021-03091648

Akhtar, M. N., Ibrahim, Z., Bunnori, N. M., Jameel, M., Tarannum, N., & Akhtar, J. N. (2021). Performance of sustainable sand concrete at ambient and elevated temperature. Construction and Building Materials, 280, 122404. doi:10.1016/j.conbuildmat.2021.122404.

Akhtar, J. N., Ahmad, T., Akhtar, M. N., & Abbas, H. (2014). Influence of Fibers and Fly Ash on Mechanical Properties of Concrete. American Journal of Civil Engineering and Architecture, 2(2), 64–69. doi:10.12691/ajcea-2-2-2.

Akhtar, J. N., & Akhtar, M. N. (2014). Enhancement in properties of concrete with demolished waste aggregate. GE-International Journal of Engineering Research, 2(9), 73-83.

Dai, Z., Tsangouri, E., Van Tittelboom, K., Zhu, X., & Gilabert, F. A. (2022). Understanding fracture mechanisms via validated virtual tests of encapsulation-based self-healing concrete beams. Materials and Design, 213, 110299. doi:10.1016/j.matdes.2021.110299.

Sharma, R., & Khan, R. A. (2021). Sulfate resistance of self-compacting concrete incorporating copper slag as fine aggregates with mineral admixtures. Construction and Building Materials, 287, 122985. doi:10.1016/j.conbuildmat.2021.122985.

Smith, J. V. (1980). (R.M.) Barrer. Zeolites and clay minerals as sorbents and molecular sieves. London and New York (Academic Press), Mineralogical Magazine, 43(330), 829–830. doi:10.1180/minmag.1980.043.330.29.

Kahani, M., Kalantary, F., Soudi, M. R., Pakdel, L., & Aghaalizadeh, S. (2020). Optimization of cost effective culture medium for Sporosarcina pasteurii as biocementing agent using response surface methodology: Up cycling dairy waste and seawater. Journal of Cleaner Production, 253, 120022. doi:10.1016/j.jclepro.2020.120022

Müller, M., Harvey, G., & Prins, R. (2000). Comparison of the dealumination of zeolites beta, mordenite, ZSM-5 and ferrierite by thermal treatment, leaching with oxalic acid and treatment with SiCl4 by 1H, 29Si and 27A1 MAS NMR. Microporous and Mesoporous Materials, 34(2), 135–147. doi:10.1016/S1387-1811(99)00167-5.

Elaiopoulos, K., Perraki, T., & Grigoropoulou, E. (2008). Mineralogical study and porosimetry measurements of zeolites from Scaloma area, Thrace, Greece. Microporous and Mesoporous Materials, 112(1–3), 441–449. doi:10.1016/j.micromeso.2007.10.021.

Coombs, D. S., Alberti, A., Armbruster, T., Artioli, G., Colella, C., Galli, E., … Vezzalini, G. (1998). Recommended nomenclature for zeolite minerals: report of the subcommittee on zeolites of the International Mineralogical Association, Commission on New Minerals and Mineral Names. Mineralogical Magazine, 62(4), 533–571. doi:10.1180/002646198547800.

Nagrockiene, D., & Girskas, G. (2016). Research into the properties of concrete modified with natural zeolite addition. Construction and Building Materials, 113, 964–969. doi:10.1016/j.conbuildmat.2016.03.133.

Markiv, T., Sobol, K., Franus, M., & Franus, W. (2016). Mechanical and durability properties of concretes incorporating natural zeolite. Archives of Civil and Mechanical Engineering, 16(4), 554–562. doi:10.1016/j.acme.2016.03.013.

Najimi, M., Sobhani, J., Ahmadi, B., & Shekarchi, M. (2012). An experimental study on durability properties of concrete containing zeolite as a highly reactive natural pozzolan. Construction and Building Materials, 35, 1023–1033. doi:10.1016/j.conbuildmat.2012.04.038.

Kurniawan, T., Muraza, O., Hakeem, A. S., & Al-Amer, A. M. (2017). Mechanochemical Route and Recrystallization Strategy to Fabricate Mordenite Nanoparticles from Natural Zeolites. Crystal Growth and Design, 17(6), 3313–3320. doi:10.1021/acs.cgd.7b00295.

Bowman, R. S. (2003). Applications of surfactant-modified zeolites to environmental remediation. Microporous and Mesoporous Materials, 61(1–3), 43–56. doi:10.1016/S1387-1811(03)00354-8.

Erdem, E., Karapinar, N., & Donat, R. (2004). The removal of heavy metal cations by natural zeolites. Journal of Colloid and Interface Science, 280(2), 309–314. doi:10.1016/j.jcis.2004.08.028.

Cruciani, G. (2006). Zeolites upon heating: Factors governing their thermal stability and structural changes. Journal of Physics and Chemistry of Solids, 67(9–10), 1973–1994. doi:10.1016/j.jpcs.2006.05.057.

Joseph, C. (2008). Experimental and numerical study of the fracture and self-healing of cementitious materials. PhD Thesis, School of Engineering, Cardiff University, Cardiff, United Kingdom.

Nishiwaki, T., Mihashi, H., Jang, B. K., & Miura, K. (2006). Development of self-healing system for concrete with selective heating around crack. Journal of Advanced Concrete Technology, 4(2), 267–275. doi:10.3151/jact.4.267.

Jafarnia, M. S., Khodadad Saryazdi, M., & Moshtaghioun, S. M. (2020). Use of bacteria for repairing cracks and improving properties of concrete containing limestone powder and natural zeolite. Construction and Building Materials, 242, 118059. doi:10.1016/j.conbuildmat.2020.118059.

Siddique, R., Jameel, A., Singh, M., Barnat-Hunek, D., Kunal, Aït-Mokhtar, A., Belarbi, R., & Rajor, A. (2017). Effect of bacteria on strength, permeation characteristics and micro-structure of silica fume concrete. Construction and Building Materials, 142, 92–100. doi:10.1016/j.conbuildmat.2017.03.057.

Alhalabi, Z. S., & Dopudja, D. (2017). Self-healing concrete: definition, mechanism and application in different types of structures. International research journal, 5-1, 59. (In Russian).

Şahmaran, M., Keskin, S. B., Ozerkan, G., & Yaman, I. O. (2008). Self-healing of mechanically-loaded self-consolidating concretes with high volumes of fly ash. Cement and Concrete Composites, 30(10), 872–879. doi:10.1016/j.cemconcomp.2008.07.001.

Parks, J., Edwards, M., Vikesland, P., & Dudi, A. (2010). Effects of Bulk Water Chemistry on Autogenous Healing of Concrete. Journal of Materials in Civil Engineering, 22(5), 515–524. doi:10.1061/(asce)mt.1943-5533.0000082.

Snoeck, D., Debaecke, S., & De Belie, N. (2014). Repeated autogenous healing in cementitious composites with microfibres and superabsorbent polymers. XIII International Conference on Durability of Building Materials and Components (XIII DBMC), 73-80, 2-5 September 2014, Sao Paulo, Brazil.

Huang, H., Ye, G., & Damidot, D. (2014). Effect of blast furnace slag on self-healing of microcracks in cementitious materials. Cement and Concrete Research, 60, 68–82. doi:10.1016/j.cemconres.2014.03.010.

Wang, J. Y., Snoeck, D., Van Vlierberghe, S., Verstraete, W., & De Belie, N. (2014). Application of hydrogel encapsulated carbonate precipitating bacteria for approaching a realistic self-healing in concrete. Construction and Building Materials, 68, 110–119. doi:10.1016/j.conbuildmat.2014.06.018.

Wang, J. Y., Soens, H., Verstraete, W., & De Belie, N. (2014). Self-healing concrete by use of microencapsulated bacterial spores. Cement and Concrete Research, 56, 139–152. doi:10.1016/j.cemconres.2013.11.009.

Qian, C. X., Luo, M., Ren, L. F., Wang, R. X., Li, R. Y., Pan, Q. F., & Chen, H. C. (2014). Self-Healing and Repairing Concrete Cracks Based on Bio-Mineralization. Key Engineering Materials, 629-630, 494–503. doi:10.4028/

Stuckrath, C., Serpell, R., Valenzuela, L. M., & Lopez, M. (2014). Quantification of chemical and biological calcium carbonate precipitation: Performance of self-healing in reinforced mortar containing chemical admixtures. Cement and Concrete Composites, 50, 10–15. doi:10.1016/j.cemconcomp.2014.02.005.

Mostavi, E., Asadi, S., Hassan, M. M., & Alansari, M. (2015). Evaluation of Self-Healing Mechanisms in Concrete with Double-Walled Sodium Silicate Microcapsules. Journal of Materials in Civil Engineering, 27(12), 04015035. doi:10.1061/(asce)mt.1943-5533.0001314.

Achal, V., Mukerjee, A., & Sudhakara Reddy, M. (2013). Biogenic treatment improves the durability and remediates the cracks of concrete structures. Construction and Building Materials, 48, 1–5. doi:10.1016/j.conbuildmat.2013.06.061.

Luo, M., Qian, C. X., & Li, R. Y. (2015). Factors affecting crack repairing capacity of bacteria-based self-healing concrete. Construction and Building Materials, 87, 1–7. doi:10.1016/j.conbuildmat.2015.03.117.

Pang, B., Zhou, Z., Hou, P., Du, P., Zhang, L., & Xu, H. (2016). Autogenous and engineered healing mechanisms of carbonated steel slag aggregate in concrete. Construction and Building Materials, 107, 191–202. doi:10.1016/j.conbuildmat.2015.12.191.

Jonkers, H. M. (2007). Self-Healing Concrete: A Biological Approach. Self-Healing Material. Springer Series in Material Science, Springer, Dordrecht, Netherlands. doi:10.1007/978-1-4020-6250-6_9.

S. Krishnapriya, D.L. Venkatesh Babu, & Prince Arulraj G. (2015). Isolation and identification of bacteria to improve the strength of concrete. Microbiological Research, 174, 48–55. doi:10.1016/j.micres.2015.03.009.

Joshi, S., Goyal, S., Mukherjee, A., & Reddy, M. S. (2017). Microbial healing of cracks in concrete: a review. Journal of Industrial Microbiology and Biotechnology, 44(11), 1511–1525. doi:10.1007/s10295-017-1978-0.

Peckmann, J., Paul, J., & Thiel, V. (1999). Bacterially mediated formation of diagenetic aragonite and native sulfur in Zechstein carbonates (Upper Permian, Central Germany). Sedimentary Geology, 126(1–4), 205–222. doi:10.1016/S0037-0738(99)00041-X.

Lee, Y. S., & Park, W. (2018). Current challenges and future directions for bacterial self-healing concrete. Applied Microbiology and Biotechnology, 102(7), 3059–3070. doi:10.1007/s00253-018-8830-y.

Wiktor, V., & Jonkers, H. M. (2011). Quantification of crack-healing in novel bacteria-based self-healing concrete. Cement and Concrete Composites, 33(7), 763–770. doi:10.1016/j.cemconcomp.2011.03.012.

Castanier, S., Le Métayer-Levrel, G., & Perthuisot, J. P. (1999). Ca-carbonates precipitation and limestone genesis - the microbiogeologist point of view. Sedimentary Geology, 126(1–4), 9–23. doi:10.1016/S0037-0738(99)00028-7.

Stocks-Fischer, S., Galinat, J. K., & Bang, S. S. (1999). Microbiological precipitation of CaCO3. Soil Biology and Biochemistry, 31(11), 1563–1571. doi:10.1016/S0038-0717(99)00082-6.

Valipour, M., Pargar, F., Shekarchi, M., & Khani, S. (2013). Comparing a natural pozzolan, zeolite, to metakaolin and silica fume in terms of their effect on the durability characteristics of concrete: A laboratory study. Construction and Building Materials, 41, 879–888. doi:10.1016/j.conbuildmat.2012.11.054.

Bhaskar, S., Hossain, K. M. A., Lachemi, M., Wolfaardt, G., & Kroukamp, M. O. (2017). Effect of self-healing on strength and durability of zeolite-immobilized bacterial cementitious mortar composites. Cement and Concrete Composites, 82, 23-33. doi:10.1016/J.CEMCONCOMP.2017.05.013.

Sreeharsha, N., & Ramana, K. V. (2016). Study on the strength characteristics of concrete with partial replacement of cement by zeolite and metakaolin. International journal of innovative research in science, engineering and technology, 5(12), 20363-20371.

Khaliq, W., & Ehsan, M. B. (2016). Crack healing in concrete using various bio influenced self-healing techniques. Construction and Building Materials, 102, 349–357. doi:10.1016/j.conbuildmat.2015.11.006.

Rao, M., Reddy, V. S., Hafsa, M., Veena, P., & Anusha, P. (2013). Bioengineered concrete-a sustainable self-healing construction material. Research Journal of Engineering Science, 2(6), 45-51.

Andalib, R., Abd Majid, M. Z., Hussin, M. W., Ponraj, M., Keyvanfar, A., Mirza, J., & Lee, H. S. (2016). Optimum concentration of Bacillus megaterium for strengthening structural concrete. Construction and Building Materials, 118, 180–193. doi:10.1016/j.conbuildmat.2016.04.142.

Siddique, R., Singh, K., Kunal, P., Singh, M., Corinaldesi, V., & Rajor, A. (2016). Properties of bacterial rice husk ash concrete. Construction and Building Materials, 121, 112–119. doi:10.1016/j.conbuildmat.2016.05.146.

Wang, J. Y., Van Tittelboom, K., De Belie, N., & Verstraete, W. (2010, June). Potential of applying bacteria to heal cracks in concrete. 1-12, 2nd international conference on sustainable construction materials and technologies, June 28-30 2010, Ancone, Italy.

Gavimath, C. C., Mali, B. M., Hooli, V. R., Mallpur, J. D., Patil, A. B., Gaddi, D., ... & Ravishankera, B. E. (2012). Potential application of bacteria to improve the strength of cement concrete. International journal of advanced biotechnology and research, 3(1), 541-544.

Maheswaran, S., Dasuru, S. S., Murthy, A. R. C., Bhuvaneshwari, B., Kumar, V. R., Palani, G. S., ... & Sandhya, S. (2014). Strength improvement studies using new type wild strain Bacillus cereus on cement mortar. Current science, 50-57.

Moharir, R. V., & Kumar, S. (2019). Challenges associated with plastic waste disposal and allied microbial routes for its effective degradation: A comprehensive review. Journal of Cleaner Production, 208, 65–76. doi:10.1016/j.jclepro.2018.10.059

Chahal, N., Siddique, R., & Rajor, A. (2012). Influence of bacteria on the compressive strength, water absorption and rapid chloride permeability of fly ash concrete. Construction and Building Materials, 28(1), 351–356. doi:10.1016/j.conbuildmat.2011.07.042.

Ramakrishnan, V., Panchalan, R. K., Bang, S. S., & City, R. (2005, March). Improvement of concrete durability by bacterial mineral precipitation. 11, 357-367. 11th International Conference on Fracture (ICF11), 20-25 March 2005, Turin, Italy.

Siddique, R., Nanda, V., Kunal, Kadri, E. H., Iqbal Khan, M., Singh, M., & Rajor, A. (2016). Influence of bacteria on compressive strength and permeation properties of concrete made with cement baghouse filter dust. Construction and Building Materials, 106, 461–469. doi:10.1016/j.conbuildmat.2015.12.112.

Siddique, R., & Chahal, N. K. (2011). Effect of ureolytic bacteria on concrete properties. Construction and Building Materials, 25(10), 3791–3801. doi:10.1016/j.conbuildmat.2011.04.010.

Ghosh, P., Mandal, S., Chattopadhyay, B. D., & Pal, S. (2005). Use of microorganism to improve the strength of cement mortar. Cement and Concrete Research, 35(10), 1980–1983. doi:10.1016/j.cemconres.2005.03.005.

Nuruddin, M. F., Chang, K. Y., & Azmee, N. M. (2014). Workability and compressive strength of ductile self-compacting concrete (DSCC) with various cement replacement materials. Construction and Building Materials, 55, 153–157. doi:10.1016/j.conbuildmat.2013.12.094.

Jana, D. (2007, May). A new look to an old pozzolan, clinoptilolite–a promising pozzolan in concrete. 168-206, Proceedings of the 29th conference on cement microscopy, May 20-24 2007, Quebec City, Canada.

Subhashini, S., K.Yaswanth, K., & S.V.Prasad, D. (2018). Study on Strength and Durability Characteristics of Hybrid Fibre Reinforced Self-Healing Concrete. International Journal of Engineering & Technology, 7(4.2), 21. doi:10.14419/ijet.v7i4.2.19993.

Eskandari, H., Vaghefi, M., & Kowsari, K. (2015). Investigation of Mechanical and Durability Properties of Concrete Influenced by Hybrid Nano Silica and Micro Zeolite. Procedia Materials Science, 11, 594–599. doi:10.1016/j.mspro.2015.11.084.

Mohsen Zadeh, P., Saghravani, S. F., & Asadollahfardi, G. (2019). Mechanical and durability properties of concrete containing zeolite mixed with meta-kaolin and micro-nano bubbles of water. Structural Concrete, 20(2), 786–797. doi:10.1002/suco.201800030.

Toklu, K. (2021). Investigation of Mechanical and Durability Behaviour of High Strength Cementitious Composites Containing Natural Zeolite and Blast-furnace Slag. Silicon, 13(8), 2821–2833. doi:10.1007/s12633-020-00866-8.

Ahmadi, B., & Shekarchi, M. (2010). Use of natural zeolite as a supplementary cementitious material. Cement and Concrete Composites, 32(2), 134–141. doi:10.1016/j.cemconcomp.2009.10.006.

Nas, M., Kurbetci, S., & Nayir, S. (2018). Investigation on strength and durability properties of concrete containing zeolite. 12-14, 13th international congress on advances in civil engineering, 12-14 September 2018, Izmir, Turkey.

Vejmelková, E., Koňáková, D., Kulovaná, T., Keppert, M., Žumár, J., Rovnaníková, P., … Černý, R. (2015). Engineering properties of concrete containing natural zeolite as supplementary cementitious material: Strength, toughness, durability, and hygrothermal performance. Cement and Concrete Composites, 55, 259–267. doi:10.1016/j.cemconcomp.2014.09.013.

Effect of Bentonite and Zeolite on the Durability of the Cement Suspension under Sulphate Attack. (1998). ACI Materials Journal, 95(6). doi:10.14359/415.

Karakurt, C., & Topçu, İ. B. (2011). Effect of blended cements produced with natural zeolite and industrial by-products on alkali-silica reaction and sulfate resistance of concrete. Construction and Building Materials, 25(4), 1789-1795. doi:10.1016/j.conbuildmat.2010.11.087

Uzal, B., & Turanli, L. (2012). Blended cements containing high volume of natural zeolites: Properties, hydration and paste microstructure. Cement and Concrete Composites, 34(1), 101–109. doi:10.1016/j.cemconcomp.2011.08.009.

Bilim, C. (2011). Properties of cement mortars containing clinoptilolite as a supplementary cementitious material. Construction and Building Materials, 25(8), 3175–3180. doi:10.1016/j.conbuildmat.2011.02.006.

Krolo, P., Krstulović, R., Dabić, P., & Bubić, A. (2005). Hydration and leaching of the cement - Zeolite composite. Ceramics - Silikaty, 49(3), 213–219.

Full Text: PDF

DOI: 10.28991/CEJ-2022-08-05-015


  • There are currently no refbacks.

Copyright (c) 2022 Mohammad Nadeem Akhtar

Creative Commons License
This work is licensed under a Creative Commons Attribution 4.0 International License.