Reinforced-concrete Bond with Brine and Olive Oil Mill Wastewater

Husein A. Alzgool, Ahmad S. Alfraihat, Hadeel Alzghool


Since the interaction between the steel reinforcement and concrete directly controls the bond strength between them, poor bond performance results in a direct negative effect on the existing state of reinforced concrete structures. This bond is one of the most important factors affecting the strength of reinforced concrete. The bond strength is measured using the pull-out test. The present paper discusses the effect of the addition of brine and olive oil mill wastewaters to the reinforced concrete mixes. The main objective of this study is to determine the effect of brine wastewaters and olive oil mill wastewaters on the bond strength between steel and concrete when adding each of the admixtures to the concrete components. Pull-out tests were conducted on concrete mixes with additive contents of 2.5, 5, 7.5, 10, and 15 % by weight of water for each. It was found that the bonding strength of reinforced concrete specimens with an olive oil mill and brine wastewater improved and decreased by approximately 6–10% and 2–5%, respectively, if compared to the reference samples. These values were observed for mixes with additive contents of 7.5% for olive oil mill wastewaters and 10% for brine wastewaters.


Doi: 10.28991/CEJ-2022-08-02-010

Full Text: PDF


Olive Oil Mill Wastewater; Brine Wastewater; Reinforcement-Concrete Bond; Bond Strength.


Far, B. K., & Zanotti, C. (2019). Concrete-concrete bond in Mode-I: A study on the synergistic effect of surface roughness and fiber reinforcement. Applied Sciences (Switzerland) (Vol. 9, Issue 12). doi:10.3390/app9122556.

Alzgool, H. A., and Mailyan, D.R. (2016). Concrete and reinforced concrete structures. Dar Majdalawi Bub. and Dis., Amman, Jordan, ISBN 978-9957-02-610-3.

Tsagaraki, E., Lazarides, H. N., & Petrotos, K. B. (2007). Olive mill wastewater treatment. In Utilization of By-Products and Treatment of Waste in the Food Industry. Aristotle University of Thessaloniki, Department of Food Science and Technology. doi:10.1007/978-0-387-35766-9_8.

Srinivasan, V., Seto, K. C., Emerson, R., & Gorelick, S. M. (2013). The impact of urbanization on water vulnerability: A coupled human-environment system approach for Chennai, India. Global Environmental Change, 23(1), 229–239. doi:10.1016/j.gloenvcha.2012.10.002.

Sun, Y., Tong, S. T. Y., Fang, M., & Yang, Y. J. (2013). Exploring the effects of population growth on future land use change in the Las Vegas Wash watershed: An integrated approach of geospatial modeling and analytics. Environment, Development and Sustainability, 15(6), 1495–1515. doi:10.1007/s10668-013-9447-z.

Schleich, J., & Hillenbrand, T. (2009). Determinants of residential water demand in Germany. Ecological Economics, 68(6), 1756–1769. doi:10.1016/j.ecolecon.2008.11.012.

Nishida, T., Otsuki, N., Ohara, H., Garba-Say, Z. M., & Nagata, T. (2013). Some considerations for the applicability of seawater as mixing water in concrete. Sustainable Construction Materials and Technologies, 2013-August, 4014004. doi:10.1061/(asce)mt.1943-5533.0001006.

Miller, S. A., Horvath, A., & Monteiro, P. J. M. (2018). Impacts of booming concrete production on water resources worldwide. Nature Sustainability, 1(1), 69–76. doi:10.1038/s41893-017-0009-5.

Wang, L., Yi, J., Xia, H., & Fan, L. (2016). Experimental study of a pull-out test of corroded steel and concrete using the acoustic emission monitoring method. Construction and Building Materials, 122, 163–170. doi:10.1016/j.conbuildmat.2016.06.046.

Gagg, C. R. (2014). Cement and concrete as an engineering material: An historic appraisal and case study analysis. Engineering Failure Analysis, 40, 114–140. doi:10.1016/j.engfailanal.2014.02.004.

Neville, A. (2001). Seawater in the Mixture”. Concrete International, 23(1), 48-51.

Nobuaki Otsuki, Tsuyoshi Saito, & Yutaka Tadokoro. (2012). Possibility of Sea Water as Mixing Water in Concrete. Journal of Civil Engineering and Architecture, 6(11), 1273–9. doi:10.17265/1934-7359/2012.10.002.

Tsagaraki E., Lazarides H.N., Petrotos K.B. (2007) Olive Mill Wastewater Treatment. In: Oreopoulou V., Russ W. Utilization of By-Products and Treatment of Waste in the Food Industry. Springer, Boston, MA. doi:10.1007/978-0-387-35766-9_8.

Fattah, K. P., Al-Tamimi, A. K., Hamweyah, W., & Iqbal, F. (2017). Evaluation of sustainable concrete produced with desalinated reject brine. International Journal of Sustainable Built Environment, 6(1), 183–190. doi:10.1016/j.ijsbe.2017.02.004.

Tay, J., & Yip, W. (1987). Use of Reclaimed Wastewater for Concrete Mixing. Journal of Environmental Engineering, 113(5), 1156–1161. doi:10.1061/(asce)0733-9372(1987)113:5(1156).

Pramanik, B. K., Shu, L., & Jegatheesan, V. (2017). A review of the management and treatment of brine solutions. Environmental Science: Water Research and Technology, 3(4), 625–658. doi:10.1039/c6ew00339g.

Maier, P. L., & Durham, S. A. (2012). Beneficial use of recycled materials in concrete mixtures. Construction and Building Materials, 29, 428–437. doi:10.1016/j.conbuildmat.2011.10.024.

Collins, F., & Sanjayan, J. G. (2002). The Challenge of the Cement Industry towards the Reduction of Greenhouse Emissions. IABSE Symposium Report, 86, 1–11. doi:10.2749/222137802796337152.

Kwan, W. H., Cheah, C. B., Ramli, M., & Chang, K. Y. (2018). Alkali-resistant glass fiber reinforced high strength concrete in simulated aggressive environment. Materiales de Construccion, 68(329), 147. doi:10.3989/mc.2018.13216.

Elchalakani, M., Aly, T., & Abu-Aisheh, E. (2014). Sustainable concrete with high volume GGBFS to build Masdar City in the UAE. Case Studies in Construction Materials, 1, 10–24. doi:10.1016/j.cscm.2013.11.001.

Xiaochun, Q., Xiaoming, L., & Xiaopei, C. (2017). The applicability of alkaline-resistant glass fiber in cement mortar of road pavement: Corrosion mechanism and performance analysis. International Journal of Pavement Research and Technology, 10(6), 536–544. doi:10.1016/j.ijprt.2017.06.003.

Mangi, S. A., Memon, Z. A., Khahro, S. H., Memon, R. A., & Memon, A. H. (2020). Potentiality of industrial waste as supplementary cementitious material in concrete production. In International Review of Civil Engineering 11(5), 214–221. doi:10.15866/irece.v11i5.18779.

Sadeghi, N., & Sharma, A. (2019). Pull-out test for studying bond strength in corrosion affected reinforced concrete structures - A review. Otto-Graf-Journal, 18, 259–272.

Ahmad, S., Pilakoutas, K., Rafi, M. M., Uz Zaman Khan, Q., & Neocleous, K. (2018). Experimental investigation of bond characteristics of deformed and plain bars in low strength concrete. Scientia Iranica 25(6A), 2954–2966. doi:10.24200/sci.2017.4570.

Rezaei-Soufi, L., Tapak, L., Forouzande, M., & Fekrazad, R. (2019). Effects of motion direction and power of Er, Cr: YSGG laser on pull-out bond strength of fiber post to root dentin in endodontically-treated single-canal premolar teeth. Biomaterials Research, 23(1). doi:10.1186/s40824-019-0165-y.

Tsiotsias, K., & Pantazopoulou, S. J. (2021). Analytical Investigation on the Effect of Test Setup on Bond Strength. CivilEng, 2(1), 14–34. doi:10.3390/civileng2010002.

Kucharska, M., & Jaskowska-Lemanska, J. (2019). Properties of a bond between the steel reinforcement and the new generation concretes- A review. IOP Conference Series: Materials Science and Engineering, 603(4), 42057. doi:10.1088/1757-899X/603/4/042057.

Liu, S., Du, M., Tian, Y., Wang, X., & Sun, G. (2021). Bond behavior of reinforced concrete considering freeze-thaw cycles and corrosion of stirrups. Materials, 14(16), 4732. doi:10.3390/ma14164732.

Wairagade, V. R., & Sonar, I. P. (2019). Bamboo concrete bond strength. International Journal of Engineering and Advanced Technology 9(1), 747–752. doi:10.35940/ijeat.F9323.109119.

Carvalho, E. P., Ferreira, E. G., da Cunha, J. C., Rodrigues, C. de S., & Maia, N. da S. (2017). Experimental investigation of steel-concrete bond for thin reinforcing bars. Latin American Journal of Solids and Structures, 14(11), 1932–1951. doi:10.1590/1679-78254116.

Alzgool, H. A. (2020). Strength characteristics of concrete with brine and olive oil mill wastewaters. International Journal of Engineering Research and Technology, 13(10), 2831–2838. doi:10.37624/IJERT/13.10.2020.2831-2838.

Alzgool, H. A., Alshbul, Z., Alfraihat, A. S., & Alzghool, H. (2021). The Effect of using Olive Oil Mill Wastewater on Bending and Compression Properties of cement mortar”. JoSE, 12(2), 85–91.

Neville, A. M., & Brooks, J. J. (1987). Concrete Technology, Longman Scientific & Technical, London, England.

Full Text: PDF

DOI: 10.28991/CEJ-2022-08-02-010


  • There are currently no refbacks.

Copyright (c) 2022 Husein A Alzgool

Creative Commons License
This work is licensed under a Creative Commons Attribution 4.0 International License.