High Strength Concrete Beams Reinforced with Hooked Steel Fibers under Pure Torsion
Abstract
Doi: 10.28991/CEJ-2022-08-01-07
Full Text: PDF
Keywords
References
ACI Committee 544. (1988) State-of-the-art on fiber reinforced concrete. ACI manual of concrete practice. American Concrete Institute.
Nanni, A. (1991). Fatigue behaviour of steel fiber reinforced concrete. Cement and Concrete Composites, 13(4), 239–245. doi:10.1016/0958-9465(91)90029-H.
Eik, M., Puttonen, J., & Herrmann, H. (2015). An orthotropic material model for steel fibre reinforced concrete based on the orientation distribution of fibres. Composite Structures, 121, 324–336. doi:10.1016/j.compstruct.2014.11.018.
Islam, M. S., & Alam, S. (2013). Principal Component and Multiple Regression Analysis for Steel Fiber Reinforced Concrete (SFRC) Beams. International Journal of Concrete Structures and Materials, 7(4), 303–317. doi:10.1007/s40069-013-0059-7.
Srikar, G., Anand, G., & Suriya Prakash, S. (2016). A Study on Residual Compression Behavior of Structural Fiber Reinforced Concrete Exposed to Moderate Temperature Using Digital Image Correlation. International Journal of Concrete Structures and Materials, 10(1), 75–85. doi:10.1007/s40069-016-0127-x.
Ju, H., Lee, D. H., Hwang, J. H., Kang, J. W., Kim, K. S., & Oh, Y. H. (2013). Torsional behavior model of steel-fiber-reinforced concrete members modifying fixed-angle softened-truss model. Composites Part B: Engineering, 45(1), 215–231. doi:10.1016/j.compositesb.2012.09.021.
Chalioris, C. E., & Karayannis, C. G. (2009). Effectiveness of the use of steel fibres on the torsional behaviour of flanged concrete beams. Cement and Concrete Composites, 31(5), 331–341. doi:10.1016/j.cemconcomp.2009.02.007.
Song, P. S., & Hwang, S. (2004). Mechanical properties of high-strength steel fiber-reinforced concrete. Construction and Building Materials, 18(9), 669–673. doi:10.1016/j.conbuildmat.2004.04.027.
Hameed, A. A., & Al-Sherrawi, M. H. (2018). Influence of Steel Fiber on the Shear Strength of a Concrete Beam. Civil Engineering Journal, 4(7), 1501. doi:10.28991/cej-0309190.
Denisiewicz, A., Socha, T., Kula, K., & Pasula, M. (2018). Influence of Steel and Polypropylene Fibers Addition on Selected Properties of Fine-Grained Concrete. Civil and Environmental Engineering Reports, 28(4), 138–148. doi:10.2478/ceer-2018-0057.
Zhong, A., Sofi, M., Lumantarna, E., Zhou, Z., & Mendis, P. (2021). Flexural Capacity Prediction Model For Steel Fibre-Reinforced Concrete Beams. International Journal of Concrete Structures and Materials, 15(1). doi:10.1186/s40069-021-00461-0.
Facconi, L., Minelli, F., Ceresa, P., & Plizzari, G. (2021). Steel fibers for replacing minimum reinforcement in beams under torsion. Materials and Structures/Materiaux et Constructions, 54(1). doi:10.1617/s11527-021-01615-y.
Lau, C. K., Htut, T. N. S., Melling, J. J., Chegenizadeh, A., & Ng, T. S. (2020). Torsional behaviour of steel fibre reinforced alkali activated concrete. Materials, 13(15), 1–20. doi:10.3390/ma13153423.
American American Specification for Testing and Materials, (1990) “Making and Curing Concrete Test Specimens in the Laboratory,” C192-1990.
American Specification for Testing and Materials, (1993) “Test for Compressive Strength of Cylinder Concrete Specimens,” C39-1993.
American Specification for Testing and Materials, (1990) “Test for Splitting Tensile Strength of Cylindrical Concrete Specimens,” C496-1990.
Iraqi Specification No. 5, (984) “Portland Cement,” Baghdad, Iraq.
Iraqi Specification No. 45. (1984). Natural Sources for Gravel that is Used in Concrete and Construction. In Baghdad, Iraq.
ASTM C33/86 (1986) Standard Specification for Concrete Aggregates, ASTM International.
DOI: 10.28991/CEJ-2022-08-01-07
Refbacks
- There are currently no refbacks.
Copyright (c) 2021 Haleem K. Hussain Al Bremani

This work is licensed under a Creative Commons Attribution 4.0 International License.