Calibration of a New Concrete Damage Plasticity Theoretical Model Based on Experimental Parameters

Alaa H. Al-Zuhairi, Ali H. Al-Ahmed, Ali A. Abdulhameed, Ammar N. Hanoon

Abstract


The introduction of concrete damage plasticity material models has significantly improved the accuracy with which the concrete structural elements can be predicted in terms of their structural response. Research into this method's accuracy in analyzing complex concrete forms has been limited. A damage model combined with a plasticity model, based on continuum damage mechanics, is recommended for effectively predicting and simulating concrete behaviour. The damage parameters, such as compressive and tensile damages, can be defined to simulate concrete behavior in a damaged-plasticity model accurately. This research aims to propose an analytical model for assessing concrete compressive damage based on stiffness deterioration. The proposed method can determine the damage variables at the start of the loading process, and this variable continues to increase as the load progresses until complete failure. The results obtained using this method were assessed through previous studies, whereas three case studies for concrete specimens and reinforced concrete structural elements (columns and gable beams) were considered. Additionally, finite element models were also developed and verified. The results revealed good agreement in each case. Furthermore, the results show that the proposed method outperforms other methods in terms of damage prediction, particularly when damage is calculated using the stress ratio.

 

Doi: 10.28991/CEJ-2022-08-02-03

Full Text: PDF


Keywords


Damage Parameters; Plasticity Model; Concrete Response; Quasi-Brittle Material.

References


Abdualrahman, S. Q., & Al-Zuhairi, A. H. (2020). A comparative study of the performance of slender reinforced concrete columns with different cross-sectional shapes. Fibers, 8(6), 35. doi:10.3390/FIB8060035.

Abdulhameed, A. A., & Said, A. I. (2020). CFRP laminates reinforcing performance of short-span wedge-blocks segmental beams. Fibers, 8(1), 6. doi:10.3390/fib8010006.

Michał, S., & Andrzej, W. (2015). Calibration of the CDP model parameters in Abaqus. The 2015world Congress on Advances in Structural Engineering and Mechanics (ASEM15), 15, 1–11, USA.

Kmiecik, P., & Kamiński, M. (2011). Modelling of reinforced concrete structures and composite structures with concrete strength degradation taken into consideration. Archives of Civil and Mechanical Engineering, 11(3), 623–636. doi:10.1016/s1644-9665(12)60105-8.

Abu Al-Rub, R. K., & Kim, S. M. (2010). Computational applications of a coupled plasticity-damage constitutive model for simulating plain concrete fracture. Engineering Fracture Mechanics, 77(10), 1577–1603. doi:10.1016/j.engfracmech.2010.04.007.

Alfarah, B., López-Almansa, F., & Oller, S. (2017). New methodology for calculating damage variables evolution in Plastic Damage Model for RC structures. Engineering Structures, 132, 70–86. doi:10.1016/j.engstruct.2016.11.022.

Arjmandi, S. A., & Yousefi, M. (2018). Numerical Modelling of Seismic Behavior of Retrofitted RC Beam-Column Joints. Civil Engineering Journal, 4(7), 1728. doi:10.28991/cej-03091108.

Al-Zuhairi, A. H., Al-Ahmed, A. H. A., Hanoon, A. N., & Abdulhameed, A. A. (2021). Structural behavior of reinforced hybrid concrete columns under biaxial loading. Latin American Journal of Solids and Structures, 18(6). doi:10.1590/1679-78256640.

Hussain, I., Yaqub, M., Ehsan, A., & Rehman, S. U. (2019). Effect of Viscosity Parameter on Numerical Simulation of Fire Damaged Concrete Columns. Civil Engineering Journal, 5(8), 1841–1849. doi:10.28991/cej-2019-03091376.

Jiang, L., Orabi, M. A., Jiang, J., & Usmani, A. (2021). Modelling concrete slabs subjected to fires using nonlinear layered shell elements and concrete damage-plasticity material. Engineering Structures, 234, 111977. doi:10.1016/j.engstruct.2021.111977.

Nabi, J., & Rahim, A. A. (2021). On the possibility of using damaged plasticity models in the assessment of structural response of gravity beams. Structures, 33, 1987–2002. doi:10.1016/j.istruc.2021.05.026.

Shafieifar, M., & Khonsari, V. (2018). A Numerical Investigation on Behavior of Column Base Plates with Different Configurations. Civil Engineering Journal, 4(6), 1223. doi:10.28991/cej-0309169.

Le Minh, H.-, Khatir, S., Abdel Wahab, M., & Cuong-Le, T. (2021). A concrete damage plasticity model for predicting the effects of compressive high-strength concrete under static and dynamic loads. Journal of Building Engineering, 44, 103239. doi:10.1016/j.jobe.2021.103239.

Sümer, Y., & Aktaş, M. (2015). Defining parameters for concrete damage plasticity model. Challenge Journal of Structural Mechanics, 1(3), 149–155. doi:10.20528/cjsmec.2015.07.023.

Faria, R., Oliver, J., & Cervera, M. (1998). A strain-based plastic viscous-damage model for massive concrete structures. International Journal of Solids and Structures, 35(14), 1533–1558. doi:10.1016/S0020-7683(97)00119-4.

Häussler-Combe, U., & Hartig, J. (2008). Formulation and numerical implementation of a constitutive law for concrete with strain-based damage and plasticity. International Journal of Non-Linear Mechanics, 43(5), 399–415. doi:10.1016/j.ijnonlinmec.2008.01.005.

Mazars, J., & Pijaudier‐Cabot, G. (1989). Continuum Damage Theory—Application to Concrete. Journal of Engineering Mechanics, 115(2), 345–365. doi:10.1061/(asce)0733-9399(1989)115:2(345).

Yu, T., Teng, J. G., Wong, Y. L., & Dong, S. L. (2010). Finite element modeling of confined concrete-II: Plastic-damage model. Engineering Structures, 32(3), 680–691. doi:10.1016/j.engstruct.2009.11.013.

Lopez-Almansa, F., Alfarah, B., & Oller, S. (2014). Numerical simulation of RC frame testing with damaged plasticity model comparison with simplified models. 2nd European Conference on Earthquake Engineering and Seismology, November 2015, 1–12.

Wahalathantri, B. L., Thambiratnam, D. P., Chan, T. H. T., & Fawzia, S. (2011). A material model for flexural crack simulation in reinforced concrete elements using ABAQUS. First International Conference on Engineering, Design and Developing the Built ENvironment for Sustainable Wellbeing, Queensland University of Technology, 260–264.

Dassault Systemes Simulia Corp. (2011). Abaqus Theory Manual Abaqus 6.11 Theory Manual. DS SIMULIA Corp.

Jankowiak, T., & Lodygowski, T. (2005). Identification of parameters of concrete damage plasticity constitutive model. Foundations of Civil and Environmental, 6(1), 53–69.

Yosef Nezhad Arya, N. (2015). Second-order FE Analysis of Axial Loaded Concrete Members According to Eurocode 2. Master Thesis, Civil and Architectural Engineering, Royal Institute of Technology (KTH), Stockholm, Sweden. Available online: http://www.diva-portal.se/smash/get/diva2:828128/FULLTEXT01.pdf (Accessed on January 2021).

Genikomsou, A., & Polak, M. A. (2016). Damaged plasticity modelling of concrete in finite element analysis of reinforced concrete slabs. Proceedings of the 9th International Conference on Fracture Mechanics of Concrete and Concrete Structures. doi:10.21012/fc9.006.

Lei, T., Qian, J., & Tian, Q. B. (2013). Finite element analysis of high-strength concrete flat columns with diagonal reinforcements. Advanced Materials Research, 791, 514–518. doi:10.4028/www.scientific.net/AMR.791-793.514.

Hibbitt, H., Karlsson, B., & Sorensen, P. (2016). ABAQUS analysis user’s manual, version 6.14.2, Dassault Systèmes, Simulia Corp, USA.

Gu, X., Jin, X., & Zhou, Y. (2016). Mechanical Properties of Concrete and Steel Reinforcement. In Basic Principles of Concrete Structures, 21–58. doi:10.1007/978-3-662-48565-1_2.

Aslani, F., & Jowkarmeimandi, R. (2012). Stress-strain model for concrete under cyclic loading. Magazine of Concrete Research, 64(8), 673–685. doi:10.1680/macr.11.00120.

Bahn, B. Y., & Hsu, C. T. T. (1998). Stress-strain behavior of concrete under cyclic loading. ACI Materials Journal, 95(2), 178–193. doi:10.14359/363.

Sima, J. F., Roca, P., & Molins, C. (2008). Cyclic constitutive model for concrete. Engineering Structures, 30(3), 695–706. doi:10.1016/j.engstruct.2007.05.005.

Dundar, C., Tokgoz, S., Tanrikulu, A. K., & Baran, T. (2008). Behaviour of reinforced and concrete-encased composite columns subjected to biaxial bending and axial load. Building and Environment, 43(6), 1109–1120. doi:10.1016/j.buildenv.2007.02.010.

Hassan, M. A. J., & Izzet, A. F. (2019). Experimental and Numerical Comparison of Reinforced Concrete Gable Roof Beams with Openings of Different Configurations. Engineering, Technology & Applied Science Research, 9(6), 5066–5073. doi:10.48084/etasr.3188.

Belarbi, A., & Hsu, T. T. C. (1994). Constitutive laws of concrete in tension and reinforcing bars stiffened by concrete. ACI Structural Journal, 91(4), 465–474. doi:10.14359/4154.

EuroCode2. (2004). “Eurocode 2: Design of concrete structures - Part 1: General rules and rules for buildings.” CEN European Committee for Standardization, Brussels, 225.

P, S. L. (1964). Equation for the Stress-Strain Curve of Concrete. ACI Journal Proceedings, 61(3), 1229–1235. doi:10.14359/7785.

Hordijk, D. A. (1992). Tensile and tensile fatigue behaviour of concrete; experiments, modelling and analyses. Heron, 37(1), 1–79.


Full Text: PDF

DOI: 10.28991/CEJ-2022-08-02-03

Refbacks

  • There are currently no refbacks.




Copyright (c) 2022 Alaa H. Al-Zuhairi, Ali H. Al-Ahmed, Ali A. Abdulhameed, Ammar N. Hanoon

Creative Commons License
This work is licensed under a Creative Commons Attribution 4.0 International License.
x
Message