Seismic Fragility Curves for Performance of Semi-rigid Connections of Steel Frames
Abstract
A steel frame with a semi-rigid connection is one of the most widely used structural systems in modern construction. These systems are cheap to make, require less time to construct and offer the highest quality and reliable construction quality without the need for highly skilled workers. However, these systems show greater natural periods compared to their perfectly rigid frame counterparts. This causes the building to attract low loads during earthquakes. In this research study, the seismic performance of steel frames with semi-rigid joints is evaluated. Three connections with capacities of 50, 70 and 100% of the beam’s plastic moment are studied and examined. The seismic performance of these frames is determined by a non-linear static pushover analysis and an incremental dynamic analysis leading finally to the fragility curves which are developed. The results show that a decrease in the connection capacity increases the probability of reaching or exceeding a particular damage limit state in the frames is found.
Doi: 10.28991/cej-2021-03091714
Full Text: PDF
Keywords
References
Goverdhan, Arvind Vasant. "A collection of experimental moment-rotation curves and evaluation of prediction equations for semi-rigid connections." PhD diss., Vanderbilt University, (1983).
Nethercot, D. A. Steel beam to column connections-a review of tests data. CIRIA, Construction Industry Research and Information Assoc., (1985).
Chen, Wai‐Fah, and N. Kishi. “Semirigid Steel Beam‐to‐Column Connections: Data Base and Modeling.” Journal of Structural Engineering 115, no. 1 (January 1989): 105–119. doi:10.1061/(asce)0733-9445(1989)115:1(105).
Chen, Wai-Fah, Yoshiaki Goto, and JY Richard Liew. Stability design of semi-rigid frames. John Wiley & Sons, (1995).
Yang, Cheol Min, and Young Moon Kim. “Cyclic Behavior of Bolted and Welded Beam-to-Column Joints.” International Journal of Mechanical Sciences 49, no. 5 (May 2007): 635–649. doi:10.1016/j.ijmecsci.2006.09.022.
Bjorhovde, Reidar. "Effect of end restraint on column strength-practical applications." Engineering Journal-American Institute of Steel Construction Inc 21, no. 1 (1984): 1-13.
Anderson, D., A. Colson, and Jean-Pierre Jaspart. "Connection and frame design for economy." Bouwen met Staal: Kwartaaltijdschrift Gewijd aan Staal en Staalconstructies (1994): 34-38.
Faella, C., V. Piluso, and G. Rizzano. “A New Method to Design Extended End Plate Connections and Semirigid Braced Frames.” Journal of Constructional Steel Research 41, no. 1 (January 1997): 61–91. doi:10.1016/s0143-974x(97)00001-1.
De Alvarenga, Arthur Ribeiro. “Plastic-Zone Advanced Analysis – Formulation Including Semi-Rigid Connection.” Engineering Structures 212 (June 2020): 110435. doi:10.1016/j.engstruct.2020.110435.
Astaneh, A., and N. Nader. "Proposed Code Provision for Sesimic Design of Steel Semirigid Frames." submitted to AISC Engineering Journal for review and publication (1992).
Mazzolani, Federico, and Vincenzo Piluso. “Theory and Design of Seismic Resistant Steel Frames” (September 10, 2012). doi:10.1201/9781482271348.
Mazzolani, F. M., and V. Piluso. "ECCS manual on design of steel structures in seismic zones." ECCS Publication (1994): 1-60.
European Committee for Standardization. Eurocode 8: Design Provisions for Earthquake Resistance of Structures. Central Secretariat, CEN, 1994. doi:10.3403/00749165u.
Mazzolani, Federico, ed. “Moment Resistant Connections of Steel Frames in Seismic Areas” (April 27, 2000). doi:10.1201/9781482289077.
Nader, Marwan N., and Abolhassan Astaneh-Asl. “Shaking Table Tests of Rigid, Semirigid, and Flexible Steel Frames.” Journal of Structural Engineering 122, no. 6 (June 1996): 589–596. doi:10.1061/(asce)0733-9445(1996)122:6(589).
Elnashai, A. S., A. Y. Elghazouli, and F. A. Denesh-Ashtiani. “Response of Semirigid Steel Frames to Cyclic and Earthquake Loads.” Journal of Structural Engineering 124, no. 8 (August 1998): 857–867. doi:10.1061/(asce)0733-9445(1998)124:8(857).
Aksoylar, Nihan Doǧramacı, Amr S. Elnashai, and Hussam Mahmoud. “The Design and Seismic Performance of Low-Rise Long-Span Frames with Semi-Rigid Connections.” Journal of Constructional Steel Research 67, no. 1 (January 2011): 114–126. doi:10.1016/j.jcsr.2010.07.001.
Razavi, Mohammad, and Ali Abolmaali. “Earthquake Resistance Frames with Combination of Rigid and Semi-Rigid Connections.” Journal of Constructional Steel Research 98 (July 2014): 1–11. doi:10.1016/j.jcsr.2014.02.006.
Faridmehr, Iman, Mahmood Md. Tahir, Tom Lahmer, and Mohd Hanim Osman. “Seismic Performance of Steel Frames with Semirigid Connections.” Journal of Engineering 2017 (2017): 1–10. doi:10.1155/2017/5284247.
Moussemi, Mojtaba, Davoud Nezamolmolki, and Ahmad Aftabi Sani. “Dynamic Investigation of a Two Story-Two Span Frame Including Semi-Rigid Khorjini Connections.” International Journal of Steel Structures 17, no. 4 (December 2017): 1471–1486. doi:10.1007/s13296-017-1216-7.
Koriga, S., A.N.T. Ihaddoudene, and M. Saidani. “Numerical Model for the Non-Linear Dynamic Analysis of Multi-Storey Structures with Semi-Rigid Joints with Specific Reference to the Algerian Code.” Structures 19 (June 2019): 184–192. doi:10.1016/j.istruc.2019.01.008.
Mahmoud, Hussam, and Amr Elnashai. “Hybrid Simulation of Semi-Rigid Partial-Strength Steel Frames.” Structures Congress 2013 (April 30, 2013). doi:10.1061/9780784412848.210.
Sharma, Vijay, Mahendra Kumar Shrimali, Shiv Dayal Bharti, and Tushar Kanti Datta. “Seismic Fragility Evaluation of Semi-Rigid Frames Subjected to Near-Field Earthquakes.” Journal of Constructional Steel Research 176 (January 2021): 106384. doi:10.1016/j.jcsr.2020.106384.
Hassan, Emad M., Sushant Admuthe, and Hussam Mahmoud. “Response of Semi-Rigid Steel Frames to Sequential Earthquakes.” Journal of Constructional Steel Research 173 (October 2020): 106272. doi:10.1016/j.jcsr.2020.106272.
Kiani, Amir, Babak Mansouri, and Abdolreza S. Moghadam. “Fragility Curves for Typical Steel Frames with Semi-Rigid Saddle Connections.” Journal of Constructional Steel Research 118 (March 2016): 231–242. doi:10.1016/j.jcsr.2015.11.001.
Guettafi, Nesrine, Djarir Yahiaoui, Khelifa Abbeche, and Tayeb Bouzid. “Numerical Evaluation of Soil-Pile-Structure Interaction Effects in Nonlinear Analysis of Seismic Fragility Curves.” Transportation Infrastructure Geotechnology (April 8, 2021). doi:10.1007/s40515-021-00161-y.
SAP2000, Version 21. “Basic analysis reference”. Computers and Structures, Inc., Berkeley, (2020), available online: https://www.csiamerica.com (accessed on February 2021).
British Standards Document, BS EN 1993-4-1, Eurocode 3. Design of steel structures. Silos, (2017). doi:10.3403/30047480u.
Zendaoui, Abdelhakim, A. Kadid, and D. Yahiaoui. “Comparison of Different Numerical Models of RC Elements for Predicting the Seismic Performance of Structures.” International Journal of Concrete Structures and Materials 10, no. 4 (September 27, 2016): 461–478. doi:10.1007/s40069-016-0170-7.
Houda, Gasmi, Bouzid Tayeb, and D. Yahiaoui. “Key Parameters Influencing Performance and Failure Modes for Interaction Soil–pile–structure System Under Lateral Loading.” Asian Journal of Civil Engineering 19, no. 3 (March 20, 2018): 355–373. doi:10.1007/s42107-018-0033-4.
Marabi, Bahram, and Abdul Kadir Marsono. "A Numerical and Analytical Study on Optimization and Efficiency of Structural Forms by Two-Outrigger in Tall Buildings." Malaysian Journal of Civil Engineering 28 (2016): 163-179.
Hu, Yiwei, Nelson Lam, Scott Joseph Menegon, and John Wilson. “The Selection and Scaling of Ground Motion Accelerograms for Use in Stable Continental Regions.” Journal of Earthquake Engineering (April 21, 2021): 1–21. doi:10.1080/13632469.2021.1913456.
Bommer, J. J., and S. G. Scott. “The Feasibility of Using Real Accelerograms for Seismic Design.” Implications of Recent Earthquakes on Seismic Risk (March 2000). doi:10.1142/9781848160194_0009.
Shome, Nilesh. Probabilistic seismic demand analysis of nonlinear structures. Stanford University, (1999).
Applied Technology Council, and United States. Federal Emergency Management Agency. Quantification of building seismic performance factors. US Department of Homeland Security, FEMA, (2009).
Rota, M., A. Penna, and G. Magenes. “A Methodology for Deriving Analytical Fragility Curves for Masonry Buildings Based on Stochastic Nonlinear Analyses.” Engineering Structures 32, no. 5 (May 2010): 1312–1323. doi:10.1016/j.engstruct.2010.01.009.
SeismoMatch,(2021). Application capable of adjusting earthquake accelerograms to match a specific target response spectrum, available from URL: http//www.seismosoft.com.
Vamvatsikos, Dimitrios, and C. Allin Cornell. “Incremental Dynamic Analysis.” Earthquake Engineering & Structural Dynamics 31, no. 3 (2002): 491–514. doi:10.1002/eqe.141.
Prestandard, F. E. M. A. "commentary for the seismic rehabilitation of buildings (FEMA356)." Washington, DC: Federal Emergency Management Agency 7 (2000): 2.
Nesrine, Guettafi, Yahiaoui Djarir, Abbeche Khelifa, and Bouzid Tayeb. “Performance Assessment of Interaction Soil Pile Structure Using the Fragility Methodology.” Civil Engineering Journal 7, no. 2 (February 1, 2021): 376–398. doi:10.28991/cej-2021-03091660.
DOI: 10.28991/cej-2021-03091714
Refbacks
- There are currently no refbacks.
Copyright (c) 2021 Mohamed Saadi
This work is licensed under a Creative Commons Attribution 4.0 International License.