Optimization of Cellular Concrete Formulation with Aluminum Waste and Mineral Additions

Mohammed Salah Bouglada, Noui Ammar, Belagraa Larbi

Abstract


The paper aims to study cellular concrete with a new approach of formulation without an autoclave, with the use of aluminum waste and incorporation of mineral additions into the sand and evaluate its physical and mechanical properties. In this experimental study, two types of cellular concrete are prepared, based on crushed and dune sand with the incorporation of 15% of the slag and 10% of pozzolana, as sand replacement. An experimental program was performed to determine the compressive strength at 28 days, the density and thermal conductivity of the confected cellular concrete. The obtained results showed that concretes prepared with crushed sand developed better mechanical resistance compared to the dune sand. It is also noted that the concretes containing the mineral additions provide a substantial increase in compressive strength in particular slag. Furthermore, cellular concretes with sand dunes offer better thermal conductivity, compared to those with crushed sand. The use of the additions reduces the Water/Binder (W/B) ratio and leads to a lower thermal conductivity regardless of the used sand nature. The outcome of the present study here in could present a modest contribution for the production of cellular concrete with local materials in particular dune sand, active mineral addition and aluminum waste. The physical and mechanical properties obtained from this new composition are estimated acceptable compared to those of the industry-prepared cellular concrete product.

 

Doi: 10.28991/cej-2021-03091721

Full Text: PDF


Keywords


Cellular Concrete; Dune Sand; Crushed Sand; Mineral Addition; Resistance; Conductivity.

References


Fu, Yanbin, Xiuling Wang, Lixin Wang, and Yunpeng Li. “Foam Concrete: A State-of-the-Art and State-of-the-Practice Review.” Advances in Materials Science and Engineering 2020 (March 26, 2020): 1–25. doi:10.1155/2020/6153602.

Hoff, George C. “Porosity-Strength Considerations for Cellular Concrete.” Cement and Concrete Research 2, no. 1 (January 1972): 91–100. doi:10.1016/0008-8846(72)90026-9.

Fenollosa, Ernesto, Iván Cabrera, Verónica Llopis, and Adolfo Alonso. “Non-Linear Analysis of Slender High Strength Concrete Column.” Civil Engineering Journal 5, no. 7 (July 18, 2019): 1440–1451. doi:10.28991/cej-2019-03091343.

Chica, Lina, and Albert Alzate. “Cellular Concrete Review: New Trends for Application in Construction.” Construction and Building Materials 200 (March 2019): 637–647. doi:10.1016/j.conbuildmfat.2018.12.136.

Ramamurthy, K., E.K. Kunhanandan Nambiar, and G. Indu Siva Ranjani. “A Classification of Studies on Properties of Foam Concrete.” Cement and Concrete Composites 31, no. 6 (July 2009): 388–396. doi:10.1016/j.cemconcomp.2009.04.006.

Panesar, D.K. “Cellular Concrete Properties and the Effect of Synthetic and Protein Foaming Agents.” Construction and Building Materials 44 (July 2013): 575–584. doi:10.1016/j.conbuildmat.2013.03.024..

Fomina, Ekaterina Victorovna, Valery S. Lesovik, M.I. Kozhukhova, and Elena B. Solovyova. “The Raw Materials Genetic Characteristics Role in Autoclave Cellular Concrete Carbonation Process.” Materials Science Forum 974 (December 2019): 224–230. doi:10.4028/www.scientific.net/msf.974.224.

N. Sotehi, “Caractéristiques Thermiques des Parois des Bâtiments et Amélioration de L’isolation", Thèse de doctorat,” Université de Constantine, 2010. Available online: https://193.194.84.142/theses/physique/SOT5778.pdf (accessed on May 2021).

Legras P., Mazzoleni J.-F., and Guegab C., Construire en béton cellulaire. Editions Eyrolles, Paris (2007).

Herihiri O., “Formulation et Caractérisation des béton légers",Mémoire de magister,” Université Mohamed Khider – Biskra, (2010). Available online: http://thesis.univ-biskra.dz/2652/1/M%C3%A9moire_GC_2010.pdf (accessed on May 2021).

Zhang, Sherong, Kelei Cao, Chao Wang, Xiaohua Wang, Jiaxin Wang, and Benbo Sun. “Effect of Silica Fume and Waste Marble Powder on the Mechanical and Durability Properties of Cellular Concrete.” Construction and Building Materials 241 (April 2020): 117980. doi:10.1016/j.conbuildmat.2019.117980..

Liu, Xin, Chengwei Ni, Ke Meng, Liye Zhang, Dongxu Liu, and Lizhi Sun. “Strengthening Mechanism of Lightweight Cellular Concrete Filled with Fly Ash.” Construction and Building Materials 251 (August 2020): 118954. doi:10.1016/j.conbuildmat.2020.118954.

Gopalakrishnan, R., VM Sounthararajan, A. Mohan, and M. Tholkapiyan. “The Strength and Durability of Fly Ash and Quarry Dust Light Weight Foam Concrete.” Materials Today: Proceedings 22 (2020): 1117–1124. doi:10.1016/j.matpr.2019.11.317.

Font, Alba, Lourdes Soriano, Mauro M. Tashima, José Monzó, María Victoria Borrachero, and Jordi Payá. “One-Part Eco-Cellular Concrete for the Precast Industry: Functional Features and Life Cycle Assessment.” Journal of Cleaner Production 269 (October 2020): 122203. doi:10.1016/j.jclepro.2020.122203.

Ni, Frank Mi-Way, Abimbola Grace Oyeyi, Sergey Averyanov, Susan Tighe, Brad Dolton, and Jim Li. Properties of ultra-low density lightweight cellular concrete containing slag. No. 19-01429. (2019).

Guetteche, MN, and H. Houari. "Caracterisation Et Activation Des Laitiers De Haut Fourneau D'el Hadjar Par Le Clinker." Sciences & Technologie. A, sciences exactes (2001): 131-135.

M. Bouglada, A. Bouderouaz, and M. Daghache, “Etude des caractéristiques d’un béton cellulaire à base d’un sable préparé",Mémoire de master,” université Bordj Bou Arreridj, (2016).

Nambiar, E.K. Kunhanandan, and K. Ramamurthy. “Influence of Filler Type on the Properties of Foam Concrete.” Cement and Concrete Composites 28, no. 5 (May 2006): 475–480. doi:10.1016/j.cemconcomp.2005.12.001..

S. Dehrib, “Étude Et Caractérisation D ’ Un Matériau Composite Poudre Aluminium / Alumine",Mémoire De Magister,” Universite Mouloud Mammeri-Tizi Ouzou, 2015. Available online: https://dl.ummto.dz/handle/ummto/1080 (accessed on March 2021).

Bouglada, Mohammed Salah, Abdelghani Naceri, and Mohamed Baheddi. "Characterization of the reactivity of mineral additions by different microstructural and mechanical approaches." Mining Science 25 (2018): 143-160. doi: 10.5277/msc182510.

Normes Afnor, “Normes AFNOR : Essais physico-mécaniques sur les bétons et mortiers (1981-1999).” (1999).

Behim, M. "Sous produits industriels et développement durable: réactivité, rôle et durabilité des laitiers d’el hadjar dans les matériaux a matrice cimentaire." Doctorat université Badji Mokhtar Annaba-Algérie (2005).

Ammar, Noui, Mohammed Salah Bouglada, Larbi Belagraa, Yacine Achour, and Abderrazak Bouzid. “Study of the Mechanical Behavior and Durability of Mortars Based on Acitvated Sand.” Mining Scince 27 (2020). doi:10.37190/msc202704.

Vu Kim, Dien, Sofya Bazhenova, Lam Tang Van, and Ly Nguyen Cong. “Sustainable Use of Industrial-Waste as Fine-Aggregate of Foam Concrete.” IOP Conference Series: Materials Science and Engineering 869 (July 10, 2020): 032022. doi:10.1088/1757-899x/869/3/032022.

Yankwa, Djobo, and Jean Noel. "effets de l’incorporation d’adjuvants minéraux sur les propriétés de ciments géopolymères à base de scories volcaniques." PhD diss., Université de Yaoundé 1, 2013. Available online: http://eprints.campuce.org/76/1/m%C3%A9moire_de_Master_Djobo.pdf (accessed on May 2021).

Kearsley, E.P, and P.J Wainwright. “The Effect of Porosity on the Strength of Foamed Concrete.” Cement and Concrete Research 32, no. 2 (February 2002): 233–239. doi:10.1016/s0008-8846(01)00665-2.

Amran, Y.H. Mugahed, Nima Farzadnia, and A.A. Abang Ali. “Properties and Applications of Foamed Concrete; a Review.” Construction and Building Materials 101 (December 2015): 990–1005. doi:10.1016/j.conbuildmat.2015.10.112.

Khaw, Yong Hui. "Performance of lightweight foamed concrete using laterite as sand replacement." PhD diss., Universiti Malaysia Pahang, UMP, (December 2010).

Oren, Osman Hulusi, Aliakbar Gholampour, Osman Gencel, and Togay Ozbakkaloglu. “Physical and Mechanical Properties of Foam Concretes Containing Granulated Blast Furnace Slag as Fine Aggregate.” Construction and Building Materials 238 (March 2020): 117774. doi:10.1016/j.conbuildmat.2019.117774..

Boutin, C. “Conductivité Thermique Du Béton Cellulaire Autoclavé: Modélisation Par Méthode Autocohérente.” Materials and Structures 29, no. 10 (December 1996): 609–615. doi:10.1007/bf02485968.

Lian, C., Y. Zhuge, and S. Beecham. “The Relationship Between Porosity and Strength for Porous Concrete.” Construction and Building Materials 25, no. 11 (November 2011): 4294–4298. doi:10.1016/j.conbuildmat.2011.05.005.


Full Text: PDF

DOI: 10.28991/cej-2021-03091721

Refbacks

  • There are currently no refbacks.




Copyright (c) 2021 Mohammed salah Bouglada

Creative Commons License
This work is licensed under a Creative Commons Attribution 4.0 International License.
x
Message