Estimating the First-year Corrosion Losses of Structural Metals for Continental Regions of the World

Yu. M. Panchenko, A. I. Marshakov, L. A. Nikolaeva, T. N. Igonin

Abstract


The knowledge of the first-year corrosion losses of metals (K1) in various regions of the world is of great importance in engineering applications. The K1 values are used to determine the categories of atmospheric corrosivity, and K1 is also the main parameter in models for the prediction of long-term corrosion losses of metals. In the absence of experimental values of K1, their values can be predicted on the basis of meteorological and aerochemical parameters of the atmosphere using the dose-response functions (DRF). Currently, the DRFs presented in ISO 9223:2012(E) /1/ standard are used for predicting K1 in any region of the world, along with the unified DRFs /2/ and the new DRFs /3/. The predicted values of corrosion losses (K1pr) of carbon steel, zinc, copper and aluminum obtained by various DRFs for various continental regions of the world are presented. In this work we used the atmosphere corrosivity parameters and experimental data on the corrosion losses of metals for the first year of exposure (K1exp) for the locations of the tests performed under the international UN/ECE program, the MICAT project, and the Russian program. For the first time, a comparative assessment of the reliability of various DRFs is given by comparing the values of K1pr and K1ex using graphical and statistical methods. The statistical indicators of reliability of predicting the corrosion losses of metals are calculated for various categories of atmosphere corrosivity. It is shown that the new dose-response functions offer the highest reliability for all categories of atmosphere corrosivity.


Keywords


Carbon Steel; Zinc; Copper; Aluminium; Simulation; Atmospheric Corrosion.

References


ISO 9223:2012. Corrosion of Metals and Alloys — Corrosivity of Atmospheres — Clasification, Determination and Estimation, 2nd ed.; International Organization for Standardization: Geneva, Switzerland, 2012.

Tidblad, J., Mikhailov, А. А., Kucera, V. “Unified Dose-Response Functions after 8 Years of Exposure. Quantification of Effects of Air Pollutants on Materials”, UN ECE Workshop Proceedings, Umweltbundesamt, Berlin. 1999: 77–86.

Panchenko, Yulia, and Andrey Marshakov. “Prediction of First-Year Corrosion Losses of Carbon Steel and Zinc in Continental Regions.” Materials 10, no. 4 (April 18, 2017): 422. doi:10.3390/ma10040422..

M. Panchenko, Yulia, Andrey I. Marshakov, Ludmila A. Nikolaeva, and Victoria V. Kovtanyuk. “Prediction of First-Year Corrosion Losses of Copper and Aluminum in Continental Regions.” AIMS Materials Science 5, no. 4 (2018): 624–649. doi:10.3934/matersci.2018.4.624.

Hao, Long, Sixun Zhang, Junhua Dong, and Wei Ke. “Atmospheric Corrosion Resistance of MnCuP Weathering Steel in Simulated Environments.” Corrosion Science 53, no. 12 (December 2011): 4187–4192. doi:10.1016/j.corsci.2011.08.028.

Leuenberger-Minger, A.U., B. Buchmann, M. Faller, P. Richner, and M. Zöbeli. “Dose–response Functions for Weathering Steel, Copper and Zinc Obtained from a Four-Year Exposure Programme in Switzerland.” Corrosion Science 44, no. 4 (April 2002): 675–687. doi:10.1016/s0010-938x(01)00097-x.

Pei, Zibo, Dawei Zhang, Yuanjie Zhi, Tao Yang, Lulu Jin, Dongmei Fu, Xuequn Cheng, Herman A. Terryn, Johannes M.C. Mol, and Xiaogang Li. “Towards Understanding and Prediction of Atmospheric Corrosion of an Fe/Cu Corrosion Sensor via Machine Learning.” Corrosion Science 170 (July 2020): 108697. doi:10.1016/j.corsci.2020.108697.

Panchenko, Yu. M., A. I. Marshakov, I. V. Bardin, and A. V. Shklyaev. “Use of Statistical Analysis Methods for Estimating the Reliability of First-Year Carbon Steel and Zinc Corrosion Loss Predictions Calculated Using Dose-Response Functions.” Protection of Metals and Physical Chemistry of Surfaces 55, no. 4 (July 2019): 753–760. doi:10.1134/s2070205119040142.

Nikitin, Evgeny, Georgy Shumatbaev, Dmitriy Terenzhev, Kirill Sinyashin, and Egor Rastergaev. “New Sintanyl Phosphonates for Protection of Oil and Gas Pipelines from Steel Corrosion.” Civil Engineering Journal 5, no. 4 (April 27, 2019): 789–795. doi:10.28991/cej-2019-03091288.

Zhi, Yuanjie, Dongmei Fu, Dawei Zhang, Tao Yang, and Xiaogang Li. “Prediction and Knowledge Mining of Outdoor Atmospheric Corrosion Rates of Low Alloy Steels Based on the Random Forests Approach.” Metals 9, no. 3 (March 26, 2019): 383. doi:10.3390/met9030383.

Tidblad, J., Kucera, V., Mikhailov, A. A. “Statistical analysis of 8 year materials exposure and acceptable deterioration and pollution levels”. UN/ECE ICP on Effects on Materials, Report No. 30, Stockholm, Sweden: Swedish Corrosion Institute. 1998: 1-49.

Tidblad, J., Kucera, V., Mikhailov, A. A., Henriksen, J., Kreislova, K., Yaites, T., Stöckle, B., Schreiner, M. “UN ECE ICP Materials. Dose-response functions on dry and wet acid deposition effects after 8 years of exposure”. Water, Air, and Soil Pollution.130 (2001): 1457-1462.

Morcillo, M., Almeida, E. M., Rosales, B. M., et al. “Functiones de Dano (Dosis/Respuesta) de la Corrosion Atmospherica en Iberoamerica”. Corrosion y Proteccion de Metales en las Atmosferas de Iberoamerica, Madrid, Spain: Programma CYTED.1998. P. 629–660.

Morcillo, M. “Atmospheric corrosion in Ibero-America: The MICAT project”. Atmospheric corrosion, ASTM STP 1239, Philadelphia, PA: American Society for Testing and Materials. 1995: 257–275.

Panchenko, Yu. M., Shuvakhina, L. N., Mikhailovskii, Yu. N. “Atmospheric corrosion of metals in Far Eastern regions”. Zashchita Metallov. 1982;18: 575–582 (In Russian).

Mikhailovskii, Yu.N., Sanko, A.P. “Statistical estimation of sulphur dioxide concentration oscillation effect in atmosphere on metal corrosion rate”. Zashchita Metallov. 1979. Vol. 15. P. 432–437 (In Russian).

Panchenko, Yu. M., Marshakov, A. I., Nikolaeva, L. A., Igonin, T. N. “Development of models for the prediction of first-year corrosion losses of standard metals for territories with coastal atmosphere in various climatic regions of the world”. 2020 (in print - Corrosion Engineering, Science and Technology).

ASTM G 16 – 95 (Reapproved 2004) Standard Guide for Applying Statistics to Analysis of Corrosion Data.

Knotkova, D., Kreislova, K., Dean, S.W. ISOCORRAG International Atmospheric Exposure Program: Summary of Results, ASTM Series 71, ASTM International, West Conshohocken, PA, 2010.

Tidblad, J., Mikhailov, А. А., Kucera, V. “Application of a Model for Prediction of Atmospheric Corrosion for Tropical Environments”. Marine Corrosion in Tropical Environment, ASTM STP 1399, American Society for Testing and Materials, West Conshohocken, PA, 2000.

Mendoza, Antonio R, and Francisco Corvo. “Outdoor and Indoor Atmospheric Corrosion of Non-Ferrous Metals.” Corrosion Science 42, no. 7 (July 2000): 1123–1147. doi:10.1016/s0010-938x(99)00135-3.

Tidblad, Johan, Vladimir Kucera, Farid Samie, Surendra N. Das, Chalothorn Bhamornsut, Leong Chow Peng, King Lung So, et al. “Exposure Programme on Atmospheric Corrosion Effects of Acidifying Pollutants in Tropical and Subtropical Climates.” Water, Air, & Soil Pollution: Focus 7, no. 1–3 (January 6, 2007): 241–247. doi:10.1007/s11267-006-9078-6.

Chico, B., D. De la Fuente, J. M. Vega, and M. Morcillo. “Mapas de España de Corrosividad Del Zinc En Atmósferas Rurales.” Revista de Metalurgia 46, no. 6 (December 30, 2010): 485–492. doi:10.3989/revmetalmadrid.1035.

Chen, Wenjuan, Long Hao, Junhua Dong, and Wei Ke. “Effect of Sulphur Dioxide on the Corrosion of a Low Alloy Steel in Simulated Coastal Industrial Atmosphere.” Corrosion Science 83 (June 2014): 155–163. doi:10.1016/j.corsci.2014.02.010.

Zhang, Xu, Shanwu Yang, Wenhua Zhang, Hui Guo, and Xinlai He. “Influence of Outer Rust Layers on Corrosion of Carbon Steel and Weathering Steel During Wet–dry Cycles.” Corrosion Science 82 (May 2014): 165–172. doi:10.1016/j.corsci.2014.01.016.

Castañeda, Abel, Dainerys Fernández, Cecilia Valdés, and Francisco Corvo. "Estudio de la corrosión atmosférica en una zona estratégica de Cuba." Revista CENIC. Ciencias Químicas 46 (2015): 14-25.

Chico, Belén, Daniel De la Fuente, Iván Díaz, Joaquín Simancas, and Manuel Morcillo. "Annual atmospheric corrosion of carbon steel worldwide. An integration of ISOCORRAG, ICP/UNECE and MICAT databases." Materials 10, no. 6 (2017): 601. doi:10.3390/ma10060601.

Surnam, B Y R, and C V Oleti. “Atmospheric Corrosion in Mauritius.” Corrosion Engineering, Science and Technology 47, no. 6 (September 2012): 446–455. doi:10.1179/1743278212y.0000000026.

Araban, V., M. Kahram, and D. Rezakhani. “Evaluation of Copper Atmospheric Corrosion in Different Environments of Iran.” Corrosion Engineering, Science and Technology 51, no. 7 (May 17, 2016): 498–506. doi:10.1080/1478422x.2016.1144265.

Sabir, S., and A. A. Ibrahim. “Influence of Atmospheric Pollution on Corrosion of Materials in Saudi Arabia.” Corrosion Engineering, Science and Technology 52, no. 4 (February 9, 2017): 276–282. doi:10.1080/1478422x.2016.1274839.

Panchenko, Yulia, Andrey Marshakov, Timofey Igonin, Ludmila Nikolaeva, and Victoria Kovtanyuk. “Corrosivity of Atmosphere Toward Structural Metals and Mapping the Continental Russian Territory.” Corrosion Engineering, Science and Technology 54, no. 5 (March 20, 2019): 369–378. doi:10.1080/1478422x.2019.1594526.


Full Text: PDF

DOI: 10.28991/cej-2020-03091563

Refbacks

  • There are currently no refbacks.




Copyright (c) 2020 Timofey Igonin

Creative Commons License
This work is licensed under a Creative Commons Attribution 4.0 International License.
x
Message