Heavy Oil Residues: Application as a Low-Cost Filler in Polymeric Materials

Yulia Yurevna Borisova, Alsu M. Minzagirova, Alfina R. Gilmanova, Mansur F. Galikhanov, Dmitry N. Borisov, Makhmut R. Yakubov


Deposits of oil sands, bitumen, extra-heavy oil, and heavy oil appear in more than 70 countries all over the world and the fraction of oil recovered gradually increases. High content of poly-condensed high molecular weight oil components (PHMOCs), which may amount up to 50-60% depending on conditions of oil formation, is the main difference of heavy oil and bitumen from conventional oil. PHMOCs can lay the foundation for the preparation of a large number of valuable materials due to their structural manifold and their potential still not discovered to full extent. This work is devoted to the study of the effect of PHMOCs on properties of the composition materials prepared from polyethylene matrix. An «asphalt» – industrial product of deasphalting of tar, as well as asphaltenes and resins isolated from heavy oil, were used as a source of PHMOCs. HDPE and fillers were characterized using MALDI, FTIR, DSC and TGA. For the new composite materials we evaluated the physicomechanical properties, the thermal decomposition characteristics (by TGA), and the accumulation rate of carbonyl groups in the oxidized polymer (on FTIR). Studies of new composite materials showed that the introduction of filler in an amount of up to 4% in a polyethylene matrix does not lead to a significant change in the physicomechanical properties, but for a number of parameters they are improved. It also figured out that the addition of PHMOCs to polyethylene makes it unnecessary to stabilize the resulting compositions with stabilizers of thermal oxidative degradation. Results of experimental studies indicate that industrial residue - «asphalt» is a promising filler and low cost of this stock renders it perfect source for the industry of polymer materials.


HDPE; Filler; Composition; Heavy Oil; Residue; Asphaltenes; Resins; Thermo-Oxidative Destruction.


American Association of Petroleum Geologists, Energy Minerals Division “Unconventional Energy Resources: 2017 Review.” Nat Resour Res, 2018. doi:10.1007/s11053-018-9432-1

Murgich, Juan, Rodríguez, and Yosslen Aray. “Molecular Recognition and Molecular Mechanics of Micelles of Some Model Asphaltenes and Resins.” Energy & Fuels 10, no. 1 (January 1996): 68–76. doi:10.1021/ef950112p.

Akmaz, S., O. Iscan, M. A. Gurkaynak, and M. Yasar. “The Structural Characterization of Saturate, Aromatic, Resin, and Asphaltene Fractions of Batiraman Crude Oil.” Petroleum Science and Technology 29, no. 2 (January 2011): 160–171. doi:10.1080/10916460903330361.

Yakubov, M. R., K. O. Sinyashin, G. R. Abilova, E. G. Tazeeva, D. V. Milordov, S. G. Yakubova, D. N. Borisov, P. I. Gryaznov, N. A. Mironov, and Yu. Yu. Borisova. “Differentiation of Heavy Oils According to the Vanadium and Nickel Content in Asphaltenes and Resins.” Petroleum Chemistry 57, no. 10 (September 23, 2017): 849–854. doi:10.1134/s096554411710019x.

Mullins, O.C., Sheu, E. Y., Hammami, A., Marshall, A. G. “Asphaltenes, heavy oils, and petroleomics.” Springer Science Business Media, (2007), 670 p. doi:10.1007/0-387-68903-6.

Chen, Zhentao, Linzhou Zhang, Suoqi Zhao, Quan Shi, and Chunming Xu. “Molecular Structure and Association Behavior of Petroleum Asphaltene.” Structure and Bonding (2015): 1–38. doi:10.1007/430_2015_181.

Ganeeva, Yu M, T N Yusupova, and G V Romanov. “Asphaltene Nano-Aggregates: Structure, Phase Transitions and Effect on Petroleum Systems.” Russian Chemical Reviews 80, no. 10 (October 31, 2011): 993–1008. doi:10.1070/rc2011v080n10abeh004174.

Alcázar-Vara, Luis A., Luis S. Zamudio-Rivera, and Eduardo Buenrostro-González. “Effect of Asphaltenes and Resins on Asphaltene Aggregation Inhibition, Rheological Behaviour and Waterflood Oil-Recovery.” Journal of Dispersion Science and Technology 37, no. 11 (November 30, 2015): 1544–1554. doi:10.1080/01932691.2015.1116082.

Speight, J. G. "Petroleum Asphaltenes-Part 1: Asphaltenes, resins and the structure of petroleum." Oil & gas science and technology 59, no. 5 (2004): 467-477. doi:10.2516/ogst:2004032.

Anisimov, M. A., Yu. M. Ganeeva, E. E. Gorodetskii, V. A. Deshabo, V. I. Kosov, V. N Kuryakov, D. I. Yudin, and I. K. Yudin. “Effects of Resins on Aggregation and Stability of Asphaltenes.” Energy & Fuels 28, no. 10 (September 24, 2014): 6200–6209. doi:10.1021/ef501145a.

Speight, J.G. “The Chemistry and Technology of Petroleum,” third ed., Marcel Dekker: New York, 1999, 953 p. doi:10.1201/b16559.

Hashmi, Sara M., and Abbas Firoozabadi. “Self-Assembly of Resins and Asphaltenes Facilitates Asphaltene Dissolution by an Organic Acid.” Journal of Colloid and Interface Science 394 (March 2013): 115–123. doi:10.1016/j.jcis.2012.11.069.

Magomedov, R. N., A. Z. Popova, T. A. Maryutina, Kh. M. Kadiev, and S. N. Khadzhiev. “Current Status and Prospects of Demetallization of Heavy Petroleum Feedstock (Review).” Petroleum Chemistry 55, no. 6 (July 2015): 423–443. doi:10.1134/s0965544115060092.

Khairudinov, I. R., N. R. Saifullin, R. G. Nigmatullin, F. M. Sultanov, V. A. Gantsev, T. I. Sazhina, and Yu. A. Kut’in. “Propane—Butane Deasphalting of Tar.” Chemistry and Technology of Fuels and Oils 35, no. 3 (May 1999): 136–138. doi:10.1007/bf02694240.

Adams, Jeramie J. “Asphaltene Adsorption, a Literature Review.” Energy & Fuels 28, no. 5 (April 16, 2014): 2831–2856. doi:10.1021/ef500282p.

Chen, Zhentao, Linzhou Zhang, Suoqi Zhao, Quan Shi, and Chunming Xu. “Molecular Structure and Association Behavior of Petroleum Asphaltene.” Structure and Bonding (2015): 1–38. doi:10.1007/430_2015_181.

Pokonova, Y. V. “Chemistry of Macromolecular Petroleum Compound.” LGU, Leningrad, 1980, 175p.

Li, Yongfeng, Qiang Chen, Kai Xu, Toshiro Kaneko, and Rikizo Hatakeyama. “Synthesis of Graphene Nanosheets from Petroleum Asphalt by Pulsed Arc Discharge in Water.” Chemical Engineering Journal 215–216 (January 2013): 45–49. doi:10.1016/j.cej.2012.09.123.

Danumah, Christophe, Andrew J. Myles, and Hicham Fenniri. “Graphitic Carbon Nanoparticles from Asphaltenes.” MRS Proceedings 1312 (2011). doi:10.1557/opl.2011.133.

Wang, Xiaomin, Junjie Guo, Xiaowei Yang, and Bingshe Xu. “Monodisperse Carbon Microspheres Synthesized from Asphaltene.” Materials Chemistry and Physics 113, no. 2–3 (February 2009): 821–823. doi:10.1016/j.matchemphys.2008.08.053.

Natarajan, Anand, Sharath C. Mahavadi, Tirupattur S. Natarajan, Jacob H. Masliyah, and Zhenghe Xu. “Preparation of Solid and Hollow Asphaltene Fibers by Single Step Electrospinning.” Journal of Engineered Fibers and Fabrics 6, no. 2 (June 2011): 1-6. doi:10.1177/155892501100600201.

Bowen III, Daniel E. “Asphaltenes-based polymer nano-composites.” U.S. Patent 8 609 752. 17 Dec. 2013.

Siddiqui, Mohammad Nahid. “Preparation and Properties of Polypropylene-Asphaltene Composites.” Polymer Composites 38, no. 9 (August 31, 2015): 1957–1963. doi:10.1002/pc.23766.

Siddiqui, Mohammad Nahid, Halim Hamid Redhwi, Muhammad Younas, Syed Hussain, and Dimitrios S. Achilias. “Use of Asphaltene Filler to Improve Low-Density Polyethylene Properties.” Petroleum Science and Technology 36, no. 11 (February 27, 2018): 756–764. doi:10.1080/10916466.2018.1445105.

Siddiqui, Mohammad Nahid. “Studies of Different Properties of Polystyrene-Asphaltene Composites.” Macromolecular Symposia 354, no. 1 (August 2015): 184–190. doi:10.1002/masy.201400133.

Wu, Hongchao, Vijay Kumar Thakur, and Michael R. Kessler. “Novel Low-Cost Hybrid Composites from asphaltene/SBS Tri-Block Copolymer with Improved Thermal and Mechanical Properties.” Journal of Materials Science 51, no. 5 (November 12, 2015): 2394–2403. doi:10.1007/s10853-015-9548-1.

Atta, Ayman, Mahmood Abdullah, Hamad Al-Lohedan, and Nermen Mohamed. “Novel Superhydrophobic Sand and Polyurethane Sponge Coated with Silica/Modified Asphaltene Nanoparticles for Rapid Oil Spill Cleanup.” Nanomaterials 9, no. 2 (February 2, 2019): 187. doi:10.3390/nano9020187.

Wu, Hongchao, and Michael R. Kessler. “Asphaltene: Structural Characterization, Molecular Functionalization, and Application as a Low-Cost Filler in Epoxy Composites.” RSC Advances 5, no. 31 (2015): 24264–24273. doi:10.1039/c5ra00509d.

Ni, Guosong, Wei Jiang, and Wenzhong Shen. “Chemical Modification of Asphaltene with SEBS as Precursor for Isotropic Pitch‐Based Carbon Fiber.” ChemistrySelect 4, no. 13 (April 2, 2019): 3690–3696. doi:10.1002/slct.201803764.

León-Bermúdez, Adan-Yovani, and Ramiro Salazar. "Synthesis and characterization of the polystyrene-asphaltene graft copolymer by FT-IR spectroscopy." CT&F-Ciencia, Tecnología y Futuro 3, no. 4 (2008): 157-167.

Yakubov, Makhmut R., Pavel I. Gryaznov, Svetlana G. Yakubova, Elvira G. Tazeeva, Nikolay A. Mironov, and Dmitry V. Milordov. “Structural-Group Composition and Properties of Heavy Oil Asphaltenes Modified with Sulfuric Acid.” Petroleum Science and Technology 34, no. 22 (November 16, 2016): 1805–1811. doi:10.1080/10916466.2016.1230751.

Siddiqui, M. N. "Functionalized asphaltenes and methods thereof." U.S. Patent Application No. 14/949,928. 2017.

Yakubov, Makhmut R., Pavel I. Gryaznov, Svetlana G. Yakubova, Kirill O. Sinyashin, Dmitry V. Milordov, and Nikolay A. Mironov. “Composition and Sorption Properties of Asphaltene Sulfonates.” Petroleum Science and Technology 35, no. 22 (November 17, 2017): 2152–2157. doi:10.1080/10916466.2017.1387564.

Castañeda, L.C., J.A.D. Muñoz, and J. Ancheyta. “Combined Process Schemes for Upgrading of Heavy Petroleum.” Fuel 100 (October 2012): 110–127. doi:10.1016/j.fuel.2012.02.022.

McGrath MJ. “Solvent deasphalting – an economic residue upgrading technology.” In: 3rd Russia & CIS bottom of the barrel technology conference, Moscow; April 24–25, 2008.

Ahn, Seonju, Sangcheol Shin, Soo Ik Im, Ki Bong Lee, and Nam Sun Nho. “Solvent Recovery in Solvent Deasphalting Process for Economical Vacuum Residue Upgrading.” Korean Journal of Chemical Engineering 33, no. 1 (October 22, 2015): 265–270. doi:10.1007/s11814-015-0146-3.

Sultanov, F. M. “Improvement in Procedure for Propane and Propane-Butane Deasphalting of Petroleum Resids.” Chemistry and Technology of Fuels and Oils 45, no. 3 (May 2009): 157–163. doi:10.1007/s10553-009-0123-9.

Islas-Flores, C. A., E. Buenrostro-Gonzalez, and C. Lira-Galeana. "Comparisons between open column chromatography and HPLC SARA fractionations in petroleum." Energy & fuels 19, no. 5 (2005): 2080-2088. doi:10.1021/ef050148+.

Ivin, K. J. (Ed.). “Structural studies of macromolecules by spectroscopic methods.” New York: Wiley, (1976).

Trejo, Fernando, Mohan S. Rana, and Jorge Ancheyta. “Thermogravimetric Determination of Coke from Asphaltenes, Resins and Sediments and Coking Kinetics of Heavy Crude Asphaltenes.” Catalysis Today 150, no. 3–4 (March 30, 2010): 272–278. doi:10.1016/j.cattod.2009.07.091.

Yusupova, Tatiana Nikolaevna, Yulia Muratovna Ganeeva, Ekaterina Sergeevna Okhotnikova, and Gennady Vasil’evich Romanov. “The Use of Thermal Analysis Methods for Monitoring the Development of Bitumen Reservoirs Using Thermal Recovery Technologies.” Journal of Thermal Analysis and Calorimetry 131, no. 2 (September 22, 2017): 1405–1411. doi:10.1007/s10973-017-6712-7.

Martin, J.M., Smith, W.C. “Production and use of rubber products.” St. Petersburg: Professiya, 2006, 477р.

Yang, Wei, Zheng-Ying Liu, Gui-Fang Shan, Zhong-Ming Li, Bang-Hu Xie, and Ming-Bo Yang. “Study on the Melt Flow Behavior of Glass Bead Filled Polypropylene.” Polymer Testing 24, no. 4 (June 2005): 490–497. doi:10.1016/j.polymertesting.2004.12.005.

Ferg, E.E., and L.L. Bolo. “A Correlation Between the Variable Melt Flow Index and the Molecular Mass Distribution of Virgin and Recycled Polypropylene Used in the Manufacturing of Battery Cases.” Polymer Testing 32, no. 8 (December 2013): 1452–1459. doi:10.1016/j.polymertesting.2013.09.009.

Malkin, A. Y., Isaev, A. I. “Rheology: Concepts, Methods, Applications.” St. Petersburg: Professiya, 2007.

Briedis, I. P., and L. A. Faitel’son. “Rheology and Molecular Structure of a Polyethylene Melt. 3. Relaxation Spectra and Characteristic Relaxation Time.” Polymer Mechanics 12, no. 2 (1977): 278–286. doi:10.1007/bf00856466.

Tsuzuki, Seiji, Kazumasa Honda, Tadafumi Uchimaru, Masuhiro Mikami, and Kazutoshi Tanabe. “The Magnitude of the CH/π Interaction Between Benzene and Some Model Hydrocarbons.” Journal of the American Chemical Society 122, no. 15 (April 2000): 3746–3753. doi:10.1021/ja993972j.

Bolshakov, G.F.,. Sidorenko, A.A “Oil stabilizers of liquid and solid hydrocarbon systems.” Petroleum Chemistry, 1988, 28(2), 264-270.

Pokonova, Y. V., Meleshkov, S.P. “Production of petroleum asphaltols.” Russian Journal Applied Chemistry, 1979, 52(10), P.2365-2367.

Velikov, A. A., N. V. Sizova, and F. G. Unger. "Mechanism of the inhibition of radical reactions of polymerization of high-molecular weight petroleum compounds." Petroleum Chemistry 5, no. 36 (1996): 460-466.

Gensler, R, C.J.G Plummer, H.-H Kausch, E Kramer, J.-R Pauquet, and H Zweifel. “Thermo-Oxidative Degradation of Isotactic Polypropylene at High Temperatures: Phenolic Antioxidants Versus HAS.” Polymer Degradation and Stability 67, no. 2 (February 2000): 195–208. doi:10.1016/s0141-3910(99)00113-5.

Full Text: PDF

DOI: 10.28991/cej-2019-03091432


  • There are currently no refbacks.

Copyright (c) 2019 Yulia Yurevna Borisova

Creative Commons License
This work is licensed under a Creative Commons Attribution 4.0 International License.