Analytical and Numerical Modelling of One-Dimensional Consolidation of Stabilized Peat

Leong Sing Wong, Shamini Somanathan

Abstract


The objective of the paper is to compare and evaluate analytical and numerical solutions of one-dimensional consolidation of stabilized peat. The type of analytical method used to solve the problem is exact method by separation of variables and utilization of Fourier series. Plaxis 2D 8.2 Professional version software was used to find numerical solution to the problem by employing the finite element method. One-dimensional consolidation problem of stabilized peat was solved numerically and validated with the one solved analytically based on laboratory experimental results. From the results, it was discovered that the consolidation characteristics of stabilized peat evaluated numerically were found to have close approximation to those evaluated analytically. There is a novel value in developing an accurate numerical prediction for the vertical consolidation of stabilized peat considering the complexity of the soil treatment method. It must be noted that peat is highly problematic because it is produced from plant decomposition with extremely high organic matter.


Keywords


One-Dimensional Consolidation; Stabilized Peat; Analytical Method; Numerical Solution.

References


Darrag A.A., El Tawil M.A., “The consolidation of soils under stochastic initial excess pore pressure”, Applied Mathematical Modelling, 1993; 17, 609-612. doi:10.1016/0307-904X(93)90069-S.

Hebib S., Farrell E.R., “Some experiences on the stabilization of Irish peats”, Canadian Geotechnical Journal, 2003; 40, 107-120. doi:10.1139/t02-09.

Liu J.C., Lei G.H., “One-dimensional consolidation of layered soils with exponentially time-growing drainage boundaries”, Computers and Geotechnics, 2013; 54, 202-209. doi:10.1016/j.compgeo.2013.07.009.

Parron Vera M.A., Yakhlef F., Rubio Cintas M.D., Lopez C., Dubujet P., Khamlichi A., Bezzazi M., “Analytical solution of coupled soil erosion and consolidation equations by asymptotic expansion approach”, Applied Mathematical Modelling, 2014; 38, 4086-4098. doi:10.1016/j.apm.2014.02.006.

Pauzi N.I.M., Omar H., Misran H., Othman S.Z., Manap A., "Settlement prediction of soil at closed dumping area using power creep function", Applied Mechanics and Materials, 2015; 773-774, 1542-1548. doi:10.4028/www.scientific.net/AMM.773-774.1542.

Xie K.H., Wang K., Chen G.H., Hu A.F., “One-dimensional consolidation of over-consolidated soil under time-dependent loading”, Frontiers of Architecture and Civil Engineering in China, 2008; 2, 67-72. doi:10.1007/s11709-008-0009-7.

Xie K.H., Wang K., Wang Y.L., Li C.X., “Analytical solution for one-dimensional consolidation of clayey soils with a threshold gradient”, Computers and Geotechnics, 2010; 37, 487-493. doi:10.1016/j.compgeo.2010.02.001.

Xie K.H., Li C.X., Liu X.W., Wang Y.L., “Analysis of one-dimensional consolidation of soft soils with non-Darcian flow caused by non-Newtonian fluid”, Journal of Rock Mechanics and Geotechnical Engineering, 2012; 4, 250-257. doi:10.3724/SP.J.1235.2012.00250.

Xie K.H., Xia C.Q., An R., Hu A.F., Zhang W.P., “A study of the one-dimensional consolidation of double-layered structured soils”, Computers and Geotechnics, 2016; 73, 189-198. doi:10.1016/j.compgeo.2015.12.007.

Zhuang Y.C., Xie K.H., “Study on one-dimensional consolidation of soil under cyclic loading and with varied compressibility”, Journal of Zhejiang University – Science, 2005; 6A, 141-147. doi:10.1631/jzus.2005.A0141.

Du Y.J., Horpibulsuk S., Wei M.L., Suksiripattanapong C., Liu M.D., “Modeling compression behavior of cement-treated zinc-contaminated clayey soils”, Soils and Foundations, 2014; 54, 1018-1026. doi:10.1016/j.sandf.2014.09.007.

Chao N.C., Lee J.W., Lo W.C., “Gravity effect on consolidation in poroelastic soils under saturated and unsaturated conditions”, Journal of Hydrology, 2018; 566, 99-108. doi:10.1016/j.jhydrol.2018.08.081.

Moradi M., Keshavarz A., Fazeli A., “One dimensional consolidation of multi-layered unsaturated soil under partially permeable boundary conditions and time-dependent loading”, Computers and Geotechnics, 2019; 107, 45-54. doi:10.1016/j.compgeo.2018.11.020.

Khabazian M., Mirghasemi A.A., Bayesteh H., “Compressibility of montmorillonite/kaolinite mixtures in consolidation testing using discrete element method”, Computers and Geotechnics, 2018; 104, 271-280. doi:10.1016/j.compgeo.2018.09.005.

Yuan S., Zhong, H., “Consolidation analysis of non-homogeneous soil by the weak form quadrature element method”, Computers and Geotechnics, 2014; 62, 1-10. doi:10.1016/j.compgeo.2014.06.012.

Zhang L., Ma M., Yang C., Wen Z., Dong S., “An investigation of pore water pressure and consolidation phenomenon in the unfrozen zone during soil freezing”, Cold Regions Science and Technology, 2016; 130, 21-32. doi:10.1016/j.coldregions.2016.07.007.

Wong L.S., “Formulation of an optimal mix design of stabilized peat columns with fly ash as a pozzolan”, Arabian Journal for Science and Engineering, 2015; 40, 1015-1025. doi:10.1007/s13369-015-1576-2.

Baral P., Rujikiatkamjorn C., Indraratna B., Kelly R., “Radial consolidation characteristics of soft undisturbed clay based on large specimens”, Journal of Rock Mechanics and Geotechnical Engineering, 2018; 10, 1037-1045. doi:10.1016/j.jrmge.2018.06.002.

Wang L., Xu Y., Xia X., Sun D., “Semi-analytical solutions to two-dimensional plane strain consolidation for unsaturated soil”, Computers and Geotechnics, 2018; 101, 100-113. doi:10.1016/j.compgeo.2018.04.015.

Terzaghi, K. Erdbaumechanik auf bodenphysikalischer Grundlage, Leipzig und Wien, F. Deuticke, 1925.

Terzaghi, K. Theoretical soil mechanics, John Wiley & Sons, New York, 1943. doi:10.1002/9780470172766.

Terzaghi, K., Peck, R.B. Soil mechanics in engineering practice, John Wiley & Sons, New York, 1948.

Liu Q., Deng Y.B., Wang T.Y., “One-dimensional nonlinear consolidation theory for soft ground considering secondary consolidation and the thermal effect”, Computers and Geotechnics, 2018; 104, 22-28. doi:10.1016/j.compgeo.2018.08.007.

Ho L., Fatahi B., “Analytical solution for the two-dimensional plain strain consolidation of an unsaturated soil stratum subjected to time-dependent loading”, Computers and Geotechnics, 2015; 67, 1-16. doi:10.1016/j.compgeo.2015.02.011.

Bardet J.P. Experimental soil mechanics, Prentice-Hall, New Jersey, 1997.

Meidani M., Chang C.S., Deng Y., “On active and inactive voids and a compression model for granular soils”, Engineering Geology, 2017; 222, 156-167. doi:10.1016/j.enggeo.2017.03.006.

Li Z., Cui Z.D., “Axisymmetric consolidation of saturated multi-layered soils with anisotropic permeability due to well pumping”, Computers and Geotechnics, 2017; 92, 229-239. doi:10.1016/j.compgeo.2017.08.015.

Kreyszig E. Advanced engineering mathematics, tenth ed., John Wiley & Sons, Singapore, 2011. doi:10.1002/bimj.19650070232.

Head K.H. Manual of soil laboratory testing, third ed., Whittles Publishing, London, 2006.

Tagar A.A., Changying J., Adamowski J., Malard J., Shi Qi C., Qishuo D., Abbasi N.A., “Finite element simulation of soil failure patterns under soil bin and field testing conditions”, Soil & Tillage Research, 2015; 145, 157-170. doi:10.1016/j.still.2014.09.006.

Rao, S.S. The finite element method in engineering, fifth ed., Butterworth-Heinemann, London, 2005. doi:10.1016/B978-0-7506-7828-5.X5000-8.

Logan D.L. A first course in the finite element method, sixth ed., Thomson, Toronto, 2016.

Brinkgreve R.B.J. PLAXIS 2D-Version 8, first ed., A.A. Balkema, Delft, 2002.

Dhatt G. and Touzot G. The finite element method displayed, John Wiley & Sons, Norwich, 1984. doi:10.1002/zamm.19850650729.

Wong L.S., Hashim R., Ali F., “Engineering behaviour of stabilized peat soil”, European Journal of Scientific Research, 2008; 21, 581-591.

Silva R.P., Rolim M.M., Gomes I.F., Pedrosa E.M.R., Tavares U.E., Santos A.N., “Numerical modeling of soil compaction in a sugarcane crop using the finite element method”, Soil & Tillage Research, 2018; 181, 1-10. doi:10.1016/j.still.2018.03.019.

Krejci T., Koudelka T., Broucek M., “Numerical modelling of consolidation processes under the water level elevation changes”, Advances in Engineering Software, 2014; 72, 166-178. doi:10.1016/j.advengsoft.2013.08.005.

Whitlow R. Basic soil mechanics, fourth ed., Pearson Education, London, 2001.


Full Text: PDF

DOI: 10.28991/cej-2019-03091254

Refbacks

  • There are currently no refbacks.




Copyright (c) 2019 Leong Sing Wong

Creative Commons License
This work is licensed under a Creative Commons Attribution 4.0 International License.
x
Message