Comparative Life Cycle Assessment of Carbon Fiber and Nano-Silica Modified Asphalt Mixtures
Downloads
In recent years, several studies have focused on enhancing the performance of asphalt mixtures using various additives; however, the environmental implications of these modifications have received limited attention. Accordingly, this study aims to evaluate the environmental impacts of asphalt mixtures incorporating carbon fiber (CF) and nano silica (NS) using the Life Cycle Assessment (LCA) methodology. In the current study, four mixtures were modelled and analyzed using SimaPro software: conventional asphalt mix (CAM), carbon fiber asphalt mix (CFAM), nano silica asphalt mix (NSAM), and carbon fiber–nano silica asphalt mix (CFNSAM). The assessment included the production cycle from raw material extraction to wearing surface installation, integrating laboratory performance data with the Ecoinvent v3.6 inventory. Results indicated that CAM exhibited the lowest environmental burden, whereas CFNSAM showed the highest impact resulting from the considerable energy inputs associated with carbon fiber fabrication. NSAM offered a balanced outcome, with moderate environmental impacts and satisfactory mechanical performance, positioning it as a more sustainable alternative. Overall, nano silica modification demonstrates promising potential for eco-efficient pavement applications.
Downloads
[1] Yue, Y., Abdelsalam, M., & S. Eisa, M. (2022). Aggregate Gradation Variation on the Properties of Asphalt Mixtures. Coatings, 12(11), 1608. doi:10.3390/coatings12111608.
[2] Davar, A., Tanzadeh, J., & Fadaee, O. (2017). Experimental evaluation of the basalt fibers and diatomite powder compound on enhanced fatigue life and tensile strength of hot mix asphalt at low temperatures. Construction and Building Materials, 153, 238–246. doi:10.1016/j.conbuildmat.2017.06.175.
[3] Khater, A., Luo, D., Abdelsalam, M., Yue, Y., Hou, Y., & Ghazy, M. (2021). Laboratory Evaluation of Asphalt Mixture Performance Using Composite Admixtures of Lignin and Glass Fibers. Applied Sciences, 11(1), 364. doi:10.3390/app11010364.
[4] Gambo, J. (2023). Experimental Study on Partial Replacement of Fine Aggregate by Expanded Polystyrene Beads in Concrete. Mesopotamian Journal of Civil Engineering, 2023, 18–25. doi:10.58496/MJCE/2023/003.
[5] Lu, W., & Yuan, H. (2011). A framework for understanding waste management studies in construction. Waste Management, 31(6), 1252–1260. doi:10.1016/j.wasman.2011.01.018.
[6] Cabeza, L. F., Rincón, L., Vilariño, V., Pérez, G., & Castell, A. (2014). Life cycle assessment (LCA) and life cycle energy analysis (LCEA) of buildings and the building sector: A review. Renewable and Sustainable Energy Reviews, 29, 394–416. doi:10.1016/j.rser.2013.08.037.
[7] Keoleian, G. A., Kendall, A., Dettling, J. E., Smith, V. M., Chandler, R. F., Lepech, M. D., & Li, V. C. (2005). Life Cycle Modeling of Concrete Bridge Design: Comparison of Engineered Cementitious Composite Link Slabs and Conventional Steel Expansion Joints. Journal of Infrastructure Systems, 11(1), 51–60. doi:10.1061/(asce)1076-0342(2005)11:1(51).
[8] Araújo, J. P. C., Oliveira, J. R. M., & Silva, H. M. R. D. (2014). The importance of the use phase on the LCA of environmentally friendly solutions for asphalt road pavements. Transportation Research Part D: Transport and Environment, 32, 97–110. doi:10.1016/j.trd.2014.07.006.
[9] Sackey, S., & Kim, B.-S. (2018). Environmental and Economic Performance of Asphalt Shingle and Clay Tile Roofing Sheets Using Life Cycle Assessment Approach and TOPSIS. Journal of Construction Engineering and Management, 144(11), 10 1061 1943–7862 0001564. doi:10.1061/(asce)co.1943-7862.0001564.
[10] Ventura, A., Monéron, P., & Jullien, A. (2008). Environmental impact of a binding course pavement section, with asphalt recycled at varying rates: Use of life cycle methodology. Road Materials and Pavement Design, 9, 319–338. doi:10.1080/14680629.2008.9690172.
[11] Mukherjee, A. (2016). Life cycle assessment of asphalt mixtures in support of an environmental product declaration. National Asphalt Pavement Institute, Lanham, United States.
[12] Samieadel, A., Schimmel, K., & Fini, E. H. (2018). Comparative life cycle assessment (LCA) of bio-modified binder and conventional asphalt binder. Clean Technologies and Environmental Policy, 20(1), 191–200. doi:10.1007/s10098-017-1467-1.
[13] Cao, R., Leng, Z., & Hsu, S. C. (2019). Comparative eco-efficiency analysis on asphalt pavement rehabilitation alternatives: Hot in-place recycling and milling-and-filling. Journal of Cleaner Production, 210, 1385–1395. doi:10.1016/j.jclepro.2018.11.122.
[14] Salehi, S., Arashpour, M., Kodikara, J., & Guppy, R. (2022). Comparative life cycle assessment of reprocessed plastics and commercial polymer modified asphalts. Journal of Cleaner Production, 337, 130464. doi:10.1016/j.jclepro.2022.130464.
[15] Sackey, S., Lee, D. E., & Kim, B. S. (2019). Life Cycle Assessment for the production phase of nano-silica-modified asphalt mixtures. Applied Sciences (Switzerland), 9(7), 1315. doi:10.3390/app9071315.
[16] Suwarto, F., Putri, D. M., Muthaher, A. M. M., & Asih Nurhidayati, Z. (2025). Cradle-to-gate life cycle assessment of asphalt mixtures incorporating nano silica. IOP Conference Series: Earth and Environmental Science, 1556(1), 012063. doi:10.1088/1755-1315/1556/1/012063.
[17] Martinez-Soto, A., Valdes-Vidal, G., Calabi-Floody, A., Avendaño-Vera, C., & Martínez-Toledo, C. (2022). Comparison of Environmental Loads of Fibers Used in the Manufacture of Hot Mix Asphalt (HMA) and Stone Mastic Asphalt (SMA) Mixes Using a Life Cycle Assessment (LCA). Sustainability (Switzerland), 14(21), 14246. doi:10.3390/su142114246.
[18] Gupta, A., Slebi-Acevedo, C. J., Lizasoain-Arteaga, E., Rodriguez-Hernandez, J., & Castro-Fresno, D. (2021). Multi-Criteria Selection of Additives in Porous Asphalt Mixtures Using Mechanical, Hydraulic, Economic, and Environmental Indicators. Sustainability, 13(4), 2146. doi:10.3390/su13042146.
[19] Xie, Y. (2025). Environmental impact assessment of Polyester Fiber Asphalt Mixture. E3S Web of Conferences, 625, 03012. doi:10.1051/e3sconf/202562503012.
[20] Raha, U. K., Kumar, B. R., & Sarkar, S. K. (2021). Policy framework for mitigating land-based marine plastic pollution in the Gangetic Delta Region of Bay of Bengal - A review. Journal of Cleaner Production, 278, 123409. doi:10.1016/j.jclepro.2020.123409.
[21] Khater, A., Luo, D., Abdelsalam, M., Ma, J., & Ghazy, M. (2021). Comparative life cycle assessment of asphalt mixtures using composite admixtures of lignin and glass fibers. Materials, 14(21), 6589. doi:10.3390/ma14216589.
[22] Yue, Y., Abdelsalam, M., Khater, A., & Ghazy, M. (2022). A comparative life cycle assessment of asphalt mixtures modified with a novel composite of diatomite powder and lignin fiber. Construction and Building Materials, 323, 126608. doi:10.1016/j.conbuildmat.2022.126608.
[23] ISO14040:2006. (2006). Environmental management-life cycle assessment—principles and framework. International Organization for Standardization (ISO), Geneva, Switzerland.
[24] ISO 14044:2006. (2006). Environmental management — Life cycle assessment — Requirements and guidelines. International Organization for Standardization (ISO), Geneva, Switzerland.
[25] Wang, F., Hoff, I., Yang, F., Wu, S., Xie, J., Li, N., & Zhang, L. (2021). Comparative assessments for environmental impacts from three advanced asphalt pavement construction cases. Journal of Cleaner Production, 297, 126659. doi:10.1016/j.jclepro.2021.126659.
[26] Sollazzo, G., Longo, S., Cellura, M., & Celauro, C. (2020). Impact analysis using life cycle assessment of asphalt production from primary data. Sustainability (Switzerland), 12(24), 1–21. doi:10.3390/su122410171.
[27] Cao, R., Leng, Z., Yu, H., & Hsu, S. C. (2019). Comparative life cycle assessment of warm mix technologies in asphalt rubber pavements with uncertainty analysis. Resources, Conservation and Recycling, 147, 137–144. doi:10.1016/j.resconrec.2019.04.031.
[28] Ma, H., Zhang, Z., Zhao, X., & Wu, S. (2019). A Comparative Life Cycle Assessment (LCA) of Warm Mix Asphalt (WMA) and Hot Mix Asphalt (HMA) Pavement: A Case Study in China. Advances in Civil Engineering, 9391857. doi:10.1155/2019/9391857.
[29] Zaumanis, M., Mallick, R. B., & Frank, R. (2014). 100% recycled hot mix asphalt: A review and analysis. Resources, Conservation and Recycling, 92, 230–245. doi:10.1016/j.resconrec.2014.07.007.
[30] Elkashef, M., & Williams, R. C. (2017). Improving fatigue and low temperature performance of 100% RAP mixtures using a soybean-derived rejuvenator. Construction and Building Materials, 151, 345–352. doi:10.1016/j.conbuildmat.2017.06.099.
[31] Santos, J., Bressi, S., Cerezo, V., Lo Presti, D., & Dauvergne, M. (2018). Life cycle assessment of low temperature asphalt mixtures for road pavement surfaces: A comparative analysis. Resources, Conservation and Recycling, 138, 283–297. doi:10.1016/j.resconrec.2018.07.012.
[32] Wang, Y., Li, H., Abdelhady, A., & Harvey, J. (2018). Initial evaluation methodology and case studies for life cycle impact of permeability of permeable pavements. International Journal of Transportation Science and Technology, 7(3), 169–178. doi:10.1016/j.ijtst.2018.07.002.
[33] Li, J., Xiao, F., Zhang, L., & Amirkhanian, S. N. (2019). Life cycle assessment and life cycle cost analysis of recycled solid waste materials in highway pavement: A review. Journal of Cleaner Production, 233, 1182–1206. doi:10.1016/j.jclepro.2019.06.061.
[34] Yang, C., Wu, S., Cui, P., Amirkhanian, S., Zhao, Z., Wang, F., Zhang, L., Wei, M., Zhou, X., & Xie, J. (2022). Performance characterization and enhancement mechanism of recycled asphalt mixtures involving high RAP content and steel slag. Journal of Cleaner Production, 336, 130484. doi:10.1016/j.jclepro.2022.130484.
[35] Vidal, R., Moliner, E., Martínez, G., & Rubio, M. C. (2013). Life cycle assessment of hot mix asphalt and zeolite-based warm mix asphalt with reclaimed asphalt pavement. Resources, Conservation and Recycling, 74, 101-114. doi:10.1016/j.resconrec.2013.02.018.
[36] Vandewalle, D., Antunes, V., Neves, J., & Freire, A. C. (2020). Assessment of Eco-Friendly Pavement Construction and Maintenance Using Multi-Recycled RAP Mixtures. Recycling, 5(3), 17. doi:10.3390/recycling5030017.
[37] Morgan, P. (2005). Carbon Fibers and Their Composites. CRC Press, Boca Raton, United Statesdoi:10.1201/9781420028744.
[38] Griffing, E., & Overcash, M. (2010) Carbon fiber HS from PAN [UIDCarbFibHS]: Contents of factory gate to factory gate life cycle inventory summary; updated version 10/04/2010; 1999–present, chemical life cycle database. Environmental Clarity, Washington, D.C., Unite States.
[39] Griffing, E., Vozzola, E., & Overcash, M. (2014). Life cycle inventory data for carbon fiber and epoxy systems and use in environmentally optimized designs. Life Cycle Assessment XIV International Conference 2014, 6-8 October, 2014, San Francisco, United States.
[40] Park, S.-J. (2018). Carbon Fibers. Springer Series in Materials Science. Springer, Singapore. doi:10.1007/978-981-13-0538-2.
[41] Wetjen, D. (2016). Interaction of carbon fibers, sizing and epoxy-based polymer matrix in carbon fiber reinforced plastics. Ph.D. Thesis, University of Augsburg, Augsburg, Germany. (In German).
[42] Heine, M. (2021). Carbon Fibers. Industrial Carbon and Graphite Materials: Raw Materials, Production and Applications, 1–2, 603–695. doi:10.1002/9783527674046.ch11.
[43] Prenzel, T. M., Hohmann, A., Prescher, T., Angerer, K., Wehner, D., Ilg, R., von Reden, T., Drechsler, K., & Albrecht, S. (2024). Bringing Light into the Dark—Overview of Environmental Impacts of Carbon Fiber Production and Potential Levers for Reduction. Polymers, 16(1), 12. doi:10.3390/polym16010012.
[44] Das, S. (2011). Life cycle assessment of carbon fiber-reinforced polymer composites. International Journal of Life Cycle Assessment, 16(3), 268–282. doi:10.1007/s11367-011-0264-z.
[45] Duflou, J. R., De Moor, J., Verpoest, I., & Dewulf, W. (2009). Environmental impact analysis of composite use in car manufacturing. CIRP Annals, 58(1), 9–12. doi:10.1016/j.cirp.2009.03.077.
[46] Jacquet, L., le Duigou, A., & Kerbrat, O. (2024). A Proposal for a Carbon Fibre-Manufacturing Life-Cycle Inventory: A Case Study from the Competitive Sailing Boat Industry. Journal of Composites Science, 8(7), 276. doi:10.3390/jcs8070276.
[47] Nunes, A. O., Viana, L. R., Guineheuc, P. M., da Silva Moris, V. A., de Paiva, J. M. F., Barna, R., & Soudais, Y. (2018). Life cycle assessment of a steam thermolysis process to recover carbon fibers from carbon fiber-reinforced polymer waste. International Journal of Life Cycle Assessment, 23(9), 1825–1838. doi:10.1007/s11367-017-1416-6.
[48] Roes, A. L., Tabak, L. B., Shen, L., Nieuwlaar, E., & Patel, M. K. (2010). Influence of using nanoobjects as filler on functionality-based energy use of nanocomposites. Journal of Nanoparticle Research, 12(6), 2011–2028. doi:10.1007/s11051-009-9819-3.
[49] Gu, S., Yang, L., Liang, X., & Zhou, J. (2024). Life Cycle Assessment and Process Optimization of Precipitated Nanosilica—A Case Study in China. Energies, 17(22), 5621. doi:10.3390/en17225621.
[50] European Commission. (2007). Integrated pollution prevention and control (IPPC): Reference document on best available techniques for the manufacture of large volume inorganic chemicals—solids and others industry. Chapter 5: Synthetic amorphous silica. European Commission, Brussels, Belgium.
[51] Bare, J. (2011). TRACI 2.0: The tool for the reduction and assessment of chemical and other environmental impacts 2.0. Clean Technologies and Environmental Policy, 13(5), 687–696. doi:10.1007/s10098-010-0338-9.
[52] Frischknecht, R., Jungbluth, N., Althaus, H., Bauer, C., Doka, G., Dones, R., Hischier, R., Hellweg, S., Humbert, S., & Köllner, T. (2007) Implementation of life cycle impact assessment methods, Data v2.0, Ecoinvent Report No. 3, Ecoinvent Centrer, Zürich, Switzerland.
[53] Huijbregts, M. A. J., Steinmann, Z. J. N., Elshout, P. M. F., Stam, G., Verones, F., Vieira, M., Zijp, M., Hollander, A., & van Zelm, R. (2017). ReCiPe2016: a harmonised life cycle impact assessment method at midpoint and endpoint level. International Journal of Life Cycle Assessment, 22(2), 138–147. doi:10.1007/s11367-016-1246-y.
[54] European Commission. (2023). JRC technical report (JRC130796). Publications Office of the European Union. European Commission, Brussels, Belgium. Available online: https://publications.jrc.ec.europa.eu/repository/handle/JRC130796 (accessed on December 2025).
[55] Sala, S. (2019). Normalisation and weighting as applied in environmental footprint. 72nd LCA Discussion Forum, 9 September, 2019, Zürich, Switzerland.
[56] Schmitt, L., Levasseur, A., Vaillancourt, M., & Lachance-Tremblay, É. (2025). Life cycle assessment of various pavement rehabilitation techniques: A case study. Transportation Research Part D: Transport and Environment, 139, 104476. doi:10.1016/j.trd.2024.104476.
[57] Soares, S. R., Toffoletto, L., & Deschênes, L. (2006). Development of weighting factors in the context of LCIA. Journal of Cleaner Production, 14(6–7), 649–660. doi:10.1016/j.jclepro.2005.07.018.
[58] Boarie, A., Abdelsalam, M., Gamal, A., & Rabah, M. (2024). Laboratory and Environmental Assessment of Asphalt Mixture Modified with a Compound of Reclaimed Asphalt Pavement and Waste Polyethylene. Buildings, 14(5), 1186. doi:10.3390/buildings14051186.
- Authors retain all copyrights. It is noticeable that authors will not be forced to sign any copyright transfer agreements.
- This work (including HTML and PDF Files) is licensed under a Creative Commons Attribution 4.0 International License.![]()















