Assessment of Red Sea Shoreline Dynamics Through Satellite Imagery and GIS Analysis
Downloads
Monitoring and analyzing coastal dynamics is essential due to continuous shoreline changes driven by natural processes and human activities with significant environmental and economic impacts. This study aims to quantitatively assess shoreline change along the Red Sea coast using integrated remote sensing and Geographic Information Systems (GIS) techniques. Multi-temporal satellite imagery from 1980 to 2025 was processed to extract shoreline positions, and shoreline change rates were calculated using the EPR method to determine patterns of erosion and accretion. The study area extends along the northwestern part of Saudi Arabia within the Tabuk region, covering Wadi al Ayn, NEOM Port, and the villages of Al Muwaylih, As Sawrah, Sharma, Al Khuraybah, and Qiyal. The results reveal that erosion rates exceed accretion rates across most shoreline segments during the study period. The average EPR of accretion reached 1.13 m/yr, while erosion recorded a higher magnitude with an average rate of −1.99 m/yr. Spatial analysis showed a total accretion area of 1.634 km² compared to a substantially larger erosion area of 19.624 km². This study lies in providing a comprehensive, long-term spatiotemporal assessment of shoreline dynamics using consistent satellite-based measurements, contributing updated baseline data for coastal management and sustainable development planning in the Red Sea region.
Downloads
[1] Darwish, K. S. (2024). Monitoring Coastline Dynamics Using Satellite Remote Sensing and Geographic Information Systems: A Review of Global Trends. Catrina: The International Journal of Environmental Sciences, 31.1 (2024), 1–23. doi:10.21608/cat.2024.233931.1196.
[2] Ramachandran, A., Sujatha, M., Alruwais, N., & Alshahrani, H. M. (2025). Forecasting coastal stability: Digital shoreline analysis system and machine learning techniques in evaluating Impacts of cyclones. Regional Studies in Marine Science, 81, 103961. doi:10.1016/j.rsma.2024.103961.
[3] Gopinath, G., Thodi, M. F. C., Surendran, U. P., Prem, P., Parambil, J. N., Alataway, A., Al-Othman, A. A., Dewidar, A. Z., & Mattar, M. A. (2023). Long-Term Shoreline and Islands Change Detection with Digital Shoreline Analysis Using RS Data and GIS. Water (Switzerland), 15(2), 244. doi:10.3390/w15020244.
[4] Dahy, B., Al-Memari, M., Al-Gergawi, A., & Burt, J. A. (2024). Remote sensing of 50 years of coastal urbanization and environmental change in the Arabian Gulf: a systematic review. Frontiers in Remote Sensing, 5(1422910). doi:10.3389/frsen.2024.1422910.
[5] Qwaider, S., Al-Ramadan, B., Shafiullah, M., Islam, A., & Worku, M. Y. (2023). GIS-Based Progress Monitoring of SDGs towards Achieving Saudi Vision 2030. Remote Sensing, 15(24), 5770. doi:10.3390/rs15245770.
[6] Isha, I. B., & Adib, M. R. M. (2020). Application of geospatial information system (GIS) using digital shoreline analysis system (DSAS) in determining shoreline changes. IOP Conference Series: Earth and Environmental Science, 616(1), 12029. doi:10.1088/1755-1315/616/1/012029.
[7] Alharbi, O. A., Hasan, S. S., Fahil, A. S., Mannaa, A., Rangel-Buitrago, N., & Alqurashi, A. F. (2023). Shoreline change rate detection applying the DSAS technique on low and medium resolution data: Case study along Ash Shu’aybah-Al Mujayrimah coastal Area of the Eastern Red Sea, Saudi Arabia. Regional Studies in Marine Science, 66, 103118. doi:10.1016/j.rsma.2023.103118.
[8] Alharbi, O. A. A. (2020). Shoreline Change Analysis Along the Rabigh Coast of Saudi Arabia, Using Multi-Temporal Satellite Imagery. Journal of King Abdulaziz University Marine Sciences, 30(2), 33–57. doi:10.4197/mar.30-2.3.
[9] Al-Zubieri, A. G., Bantan, R. A., Abdalla, R., Antoni, S., Al-Dubai, T. A., & Majeed, J. (2018). Application Of Gis and Remote Sensing to Monitor the Impact of Development Activities on the Coastal Zone of Jazan City on the Red Sea, Saudi Arabia. The International Archives of the Photogrammetry, Remote Sensing and Spatial Information Sciences, XLII-3/W4, 45–50. doi:10.5194/isprs-archives-xlii-3-w4-45-2018.
[10] Al-Zubieri, A. G., Ghandour, I. M., Bantan, R. A., & Basaham, A. S. (2020). Shoreline Evolution Between Al Lith and Ras Mahāsin on the Red Sea Coast, Saudi Arabia Using GIS and DSAS Techniques. Journal of the Indian Society of Remote Sensing, 48(10), 1455–1470. doi:10.1007/s12524-020-01169-6.
[11] Niang, A. J. (2020). Monitoring long-term shoreline changes along Yanbu, Kingdom of Saudi Arabia using remote sensing and GIS techniques. Journal of Taibah University for Science, 14(1), 762–776. doi:10.1080/16583655.2020.1773623.
[12] Daoudi, M., & Niang, A. J. (2021). Detection of shoreline changes along the coast of Jeddah and its impact on the geomorphological system using GIS techniques and remote sensing data (1951–2018). Arabian Journal of Geosciences, 14(13), 1265. doi:10.1007/s12517-021-07605-2.
[13] Alharbi, O. A., & Niang, A. J. (2025). Shoreline Development During a Four-Decade Period, Along Al Qunfudhah Coast, Saudi Arabia. Coasts, 5(4), 45. doi:10.3390/coasts5040045.
[14] Colak, A. T. I. (2024). Geospatial analysis of shoreline changes in the Oman coastal region (2000-2022) using GIS and remote sensing techniques. Frontiers in Marine Science, 11, 1305283. doi:10.3389/fmars.2024.1305283.
[15] Teillet, T., Bois, P., Homewood, P., Mettraux, M., Samimi-Namin, K., & Vahrenkamp, V. (2025). Multidecadal Morphodynamic evolution of shorelines and coral reefs along the Arabian Sea Coast of Oman: Bar Al Hikman Peninsula. Journal of Coastal Conservation, 29(1), 17. doi:10.1007/s11852-024-01087-6.
[16] Daoudi, M. b. A., Abu Zaid, M. S. A. & Al Ajami, M. M. (2024). Coastal changes and their environmental impacts in Jeddah, Saudi Arabia. (2024). Egyptian Journal of Environmental Change, 16(5), 67–96. doi:10.21608/egjec.2024.381007 (In Arabic).
[17] Sarrau, J., Al Abdouli, K., & Abuelgasim, A. (2025). Spatiotemporal variations of the United Arab Emirates coastline each decade from 1991 to 2021. Frontiers in Remote Sensing, 6. doi:10.3389/frsen.2025.1468918.
[18] Alamery, E. R., El Melki, M. N., Faqeih, K. Y., Alamri, S. M., Alamry, J. Y., & Alasiri, F. M. M. (2025). Bayesian Projections of Shoreline Retreat Under Climate Change Along the Arid Coast of Duba, Saudi Arabia. Sustainability (Switzerland), 17(22), 10401. doi:10.3390/su172210401.
[19] PROJECT NEOM (2026). Saudi vision 2030, NEOM, Riyadh, Saudi Arabia. Available online: https://www.vision2030.gov.sa/en/explore/projects/neom (accessed on December 2025).
[20] Official Map of Kingdom of Saudi Arabia (2026). General Authority for Survey and Geospatial Information, Riyadh, Saudi Arabia. Available online: https://www.geoportal.sa/Geoportal/GeospatialOpenData/OfficialSaudiMap (accessed on December 2025). (In Arabic).
[21] Scribble Maps (2026). Scribble Maps, Windsor, Canada. Available online: https://www.scribblemaps.com/maps/ view/NEOM/jqtPQ7p6Lw (accessed on December 2025).
[22] NEOM (2026). NEOM and SAUDIA offer regular international service from NEOM Bay Airport, NEOM, Riyadh, Saudi Arabia. Available online: https://www.neom.com/ar-sa/newsroom/neom-and-saudia (accessed on December 2025).
[23] SPA (2026). The Saudi Press Agency (SPA), Riyadh, Saudi Arabia. Available online: https://www.spa.gov.sa/1939885 (accessed on December 2025).
[24] NEOM (2026). A New Future: NEOM is a region in the making in northwest Saudi Arabia. NEOM, Riyadh, Saudi Arabia. Available online: https://www.neom.com/ar-sa (accessed on December 2025).
[25] Siyal, A. A., Solangi, G. S., Siyal, Z. ul A., Siyal, P., Babar, M. M., & Ansari, K. (2022). Shoreline change assessment of Indus delta using GIS-DSAS and satellite data. Regional Studies in Marine Science, 53. doi:10.1016/j.rsma.2022.102405.
[26] Earth Explorer (2026). Earth Explorer: U.S. Department of the Interior, Washington, United States. Available online: https://earthexplorer.usgs.gov (accessed on December 2025).
[27] USGS (2026). Digital Shoreline Analysis System (DSAS), U.S. Department of the Interior, Washington, United States. Available online: https://code.usgs.gov/cch/dsas (accessed on December 2025).
[28] Aziz, K. M. A. (2024). Quantitative Monitoring of Coastal Erosion and Changes Using Remote Sensing in a Mediterranean Delta. Civil Engineering Journal (Iran), 10(6), 1842–1862. doi:10.28991/CEJ-2024-010-06-08.
[29] Baig, M. R. I., Ahmad, I. A., Shahfahad, Tayyab, M., & Rahman, A. (2020). Analysis of shoreline changes in Vishakhapatnam coastal tract of Andhra Pradesh, India: an application of digital shoreline analysis system (DSAS). Annals of GIS, 26(4), 361–376. doi:10.1080/19475683.2020.1815839.
[30] Nerves, A., Rivera, F. D., Blanco, A., Tirol, Y., & Nadaoka, K. (2024). Shoreline Change Analysis in New Washington, Aklan using Digital Shoreline Analysis System (DSAS). ISPRS Annals of the Photogrammetry, Remote Sensing and Spatial Information Sciences, X-5–2024, 111–117. doi10.5194/isprs-annals-x-5-2024-111-2024.
[31] Thieler, E. R., Himmelstoss, E. A., Zichichi, J. L., & Ergul, A. (2009). The Digital Shoreline Analysis System (DSAS) Version 4.0 - An ArcGIS extension for calculating shoreline change. Open-File Report, 2008-1278. doi:10.3133/ofr20081278.
[32] Elia, A. K. (2005). Risk Evolution of the coastline in Lebanon between 1962 and 2003. Master Thesis, ESGT, Le Mans, France. (In French).
[33] Adebola, A. O., Komolafe, A. A., Adegboyega, S. A., & Ibitoye, M. O. (2017). Time series analysis of shoreline changes along the coastline of Rivers State, Nigeria. Ife Research Publications in Geography, 15, 63-77.
[34] Brooks, S. M., & Spencer, T. (2010). Temporal and spatial variations in recession rates and sediment release from soft rock cliffs, Suffolk coast, UK. Geomorphology, 124(1–2), 26–41. doi:10.1016/j.geomorph.2010.08.005.
[35] Saad, R., Gerard, J. A., & Gerard, P. (2021). Detection of the shoreline changes using DSAS technique and remote sensing: a case study of Tyre Southern Lebanon. Journal of Oceanography and Marine Research, 9(11), 1000004.
[36] Song, Y., Shen, Y., Xie, R., & Li, J. (2021). A DSAS-based study of central shoreline change in Jiangsu over 45 years. Anthropocene Coasts, 4(1), 115–138. doi:10.1139/anc-2020-0001.
[37] Zorlu, O., & Kusak, L. (2025). An assessment of the long-term change of the Mersin west coastline using digital shoreline analysis system and detection of pattern similarity using fuzzy C-means clustering. Frontiers in Marine Science, 12. doi:10.3389/fmars.2025.1457016.
[38] Christofi, D., Mettas, C., Evagorou, E., Stylianou, N., Eliades, M., Theocharidis, C., Chatzipavlis, A., Hasiotis, T., & Hadjimitsis, D. (2025). A Review of Open Remote Sensing Data with GIS, AI, and UAV Support for Shoreline Detection and Coastal Erosion Monitoring. Applied Sciences (Switzerland), 15(9), 4771. doi:10.3390/app15094771.
[39] Pradana, M. R., & Semedi, J. M. (2025). Effortless coastal monitoring: Unsupervised detection of shoreline alterations due to tin mining in Bangka Belitung. IOP Conference Series: Earth and Environmental Science, 1462(1), 12004. doi:10.1088/1755-1315/1462/1/012004.
[40] Zoysa, S., Basnayake, V., Samarasinghe, J. T., Gunathilake, M. B., Kantamaneni, K., Muttil, N., Pawar, U., & Rathnayake, U. (2023). Analysis of Multi-Temporal Shoreline Changes Due to a Harbor Using Remote Sensing Data and GIS Techniques. Sustainability (Switzerland), 15(9), 7651. doi:10.3390/su15097651.
[41] El-Asmar, H. M., Ahmed, M. H., El-Kafrawy, S. B., Oubid-Allah, A. H., Mohamed, T. A., & Khaled, M. A. (2015). Monitoring and assessing the coastal ecosystem at Hurghada, Red Sea Coast, Egypt. Journal of Environment and Earth Science, 5(6), 144–160.
[42] Nassar, K., El-Adawy, A., Zakaria, M., Diab, R., & Masria, A. (2022). Quantitative appraisal of naturalistic/anthropic shoreline shifts for hurghada: Egypt. Marine Georesources and Geotechnology, 40(5), 573–588. doi:10.1080/1064119X.2021.1918807.
[43] Dewidar, K. (2011). Changes in the Shoreline Position Caused by Natural Processes for Coastline of Marsa Alam – Hamata, Red Sea, Egypt. International Journal of Geosciences, 2(4), 523–529. doi:10.4236/ijg.2011.24055.
- Authors retain all copyrights. It is noticeable that authors will not be forced to sign any copyright transfer agreements.
- This work (including HTML and PDF Files) is licensed under a Creative Commons Attribution 4.0 International License.![]()















