Mechanical Properties and Structural Behavior of Sustainable Ferrock Concrete for Green Construction Applications
Downloads
This study aims to develop a sustainable alternative to Ordinary Portland Cement (OPC) by investigating the mechanical and structural properties of Ferrock concrete, an iron carbonate-based binder composed largely of industrial by-products. An experimental program was conducted, testing over 114 concrete cubes, 18 cylinders, and 6 full-scale reinforced concrete beams with Ferrock replacing OPC at 5%, 10%, 15%, 20%, and 25% by weight. The results demonstrate that a 15% replacement ratio yields a 25% increase in 28-day compressive strength, while splitting tensile strength improves consistently with Ferrock content. Most notably, reinforced beams with 20% Ferrock exhibited up to a 33% increase in flexural capacity, with failure modes shifting toward more ductile behavior and experimental capacities exceeding predictions from ACI 318, CSA A23.3, and Eurocode 2 by up to 62%. This research confirms that Ferrock is not only a carbon-negative material but also a technically superior partial replacement for OPC, offering enhanced strength, ductility, and structural performance for green construction applications.
Downloads
[1] Scrivener, K. L., John, V. M., & Gartner, E. M. (2018). Eco-efficient cements: Potential economically viable solutions for a low-CO2 cement-based materials industry. Cement and Concrete Research, 114, 2–26. doi:10.1016/j.cemconres.2018.03.015.
[2] Benhelal, E., Zahedi, G., Shamsaei, E., & Bahadori, A. (2013). Global strategies and potentials to curb CO2 emissions in cement industry. Journal of Cleaner Production, 51, 142–161. doi:10.1016/j.jclepro.2012.10.049.
[3] Imbabi, M. S., Carrigan, C., & McKenna, S. (2012). Trends and developments in green cement and concrete technology. International Journal of Sustainable Built Environment, 1(2), 194–216. doi:10.1016/j.ijsbe.2013.05.001.
[4] Damineli, B. L., Kemeid, F. M., Aguiar, P. S., & John, V. M. (2010). Measuring the eco-efficiency of cement use. Cement and Concrete Composites, 32(8), 555–562. doi:10.1016/j.cemconcomp.2010.07.009.
[5] Juenger, M. C. G., Winnefeld, F., Provis, J. L., & Ideker, J. H. (2011). Advances in alternative cementitious binders. Cement and Concrete Research, 41(12), 1232–1243. doi:10.1016/j.cemconres.2010.11.012.
[6] Rashad, A. M. (2013). A comprehensive overview about the influence of different additives on the properties of alkali-activated slag - A guide for Civil Engineer. Construction and Building Materials, 47, 29–55. doi:10.1016/j.conbuildmat.2013.04.011.
[7] Lothenbach, B., Scrivener, K., & Hooton, R. D. (2011). Supplementary cementitious materials. Cement and Concrete Research, 41(12), 1244–1256. doi:10.1016/j.cemconres.2010.12.001.
[8] Rihan, M. A. M., Onchiri, R. O., Gathimba, N., & Sabuni, B. (2024). Mechanical and Microstructural Properties of Geopolymer Concrete Containing Fly Ash and Sugarcane Bagasse Ash. Civil Engineering Journal (Iran), 10(4), 1292–1309. doi:10.28991/CEJ-2024-010-04-018.
[9] Adeleke, B. O., Kinuthia, J. M., Oti, J., Pirrie, D., & Power, M. (2024). Mechanical and Microstructural Investigation of Geopolymer Concrete Incorporating Recycled Waste Plastic Aggregate. Materials, 17(6), 1340. doi:10.3390/ma17061340.
[10] Das, S., Hendrix, A., Stone, D., & Neithalath, N. (2015). Flexural fracture response of a novel iron carbonate matrix – Glass fiber composite and its comparison to Portland cement-based composites. Construction and Building Materials, 93, 360–370. doi:10.1016/j.conbuildmat.2015.06.011.
[11] Das, S., Stone, D., Convey, D., & Neithalath, N. (2014). Pore- and micro-structural characterization of a novel structural binder based on iron carbonation. Materials Characterization, 98, 168–179. doi:10.1016/j.matchar.2014.10.025.
[12] Prashanth, M., Gokul, V., & Shanmugasundaram, M. (2019). Investigation on Ferrock Based Mortar an Environment Friendly Concrete. SSRN Electronic Journal, 1-4. doi:10.2139/ssrn.3461209.
[13] Puthoor, T. B. (2022). Introduction of sustainable and green materials in building construction for the wellness of the environment from an ethical and financial standpoint. Master Thesis, Technische Universität Wien, Vienna, Austria.
[14] Su, Q., Latypov, R., Chen, S., Zhu, L., Liu, L., Guo, X., & Qian, C. (2025). Life Cycle Assessment and Environmental Load Management in the Cement Industry. Systems, 13(7), 611. doi:10.3390/systems13070611.
[15] Das, S., Aguayo, M., Kabay, N., Mobasher, B., Sant, G., & Neithalath, N. (2018). Elucidating the influences of compliant microscale inclusions on the fracture behavior of cementitious composites. Cement and Concrete Composites, 94, 13–23. doi:10.1016/j.cemconcomp.2018.08.009.
[16] De Weerdt, K., Plusquellec, G., Belda Revert, A., Geiker, M. R., & Lothenbach, B. (2019). Effect of carbonation on the pore solution of mortar. Cement and Concrete Research, 118, 38–56. doi:10.1016/j.cemconres.2019.02.004.
[17] Rajesh, V., Patel, M., & Solanki, H. (2018). Development of carbon negative concrete by using Ferrock. Proceedings of the International Conference on Current Research Trends in Engineering and Technology, 26-27 April, 2018, Cochin, India.
[18] Deshpande, S., & Sakhare, V. (2024). Mechanical, microstructural, durability, and energy analysis of fly ash geopolymer modified with autoclaved aerated concrete block waste. Emergent Materials, 8(3), 2025–2044. doi:10.1007/s42247-024-00899-4.
[19] Mitikie, B. B., Gari, B. D., & Elsaigh, W. A. (2024). Ferrock cement and oxalic acid for enhanced concrete strength and durability against sulphate attack. Engineering Research Express, 6(2), 25122. doi:10.1088/2631-8695/ad592a.
[20] Singh, N., & Singh, J. (2025). Characterization of Concrete with Ferrock as a Potential Cement Substitute: Mechanical Strength, Durability and Microstructure analysis. Iranian Journal of Science and Technology - Transactions of Civil Engineering. doi:10.1007/s40996-025-01885-4.
[21] ES 4756-1. (2009). Cement Part:( 1) Composition, Specifications and Conformity Criteria for Common Cements. Egyptian Organization for Standardization and Quality (EOS), Cairo, Egypt. (In Arabic).
[22] BS EN 197-1:2011. (2011). Cement - Part 1: Composition, specifications and conformity criteria for common cements. British Standards Institution (BSI), London, United Kingdom.
[23] ASTM C618-19. (2019). Standard Specification for Coal Fly Ash and Raw or Calcined Natural Pozzolan for Use in Concrete. ASTM International, Pennsylvania, United States. doi:10.1520/C0618-19.
[24] ASTM C568/C568M-15. (2022). Standard Specification for Limestone Dimension Stone. ASTM International, Pennsylvania, United States. doi:10.1520/C0568_C0568M-15.
[25] ASTM C494/C494M-17. (2020). Standard Specification for Chemical Admixtures for Concrete. ASTM International, Pennsylvania, United States. doi:10.1520/C0494_C0494M-17.
[26] BS 5075-3:1985. (1985). Concrete admixtures - Specification for superplasticizing admixtures. British Standards Institution (BSI), London, United Kingdom.
[27] ASTM C39/C39M-21. (2008). Standard Test Method for Compressive Strength of Cylindrical Concrete Specimens. ASTM International, Pennsylvania, United States. doi:10.1520/C0039_C0039M-21.
[28] BS EN 12390-3:2019 - TC. (2019). Testing hardened concrete - Compressive strength of test specimens. British Standards Institution (BSI), London, United Kingdom.
[29] ASTM C496-96. (2017). Standard Test Method for Splitting Tensile Strength of Cylindrical Concrete Specimens. ASTM International, Pennsylvania, United States. doi:10.1520/C0496-96.
[30] Mehta, P. K., & Monteiro, P. J. (2006). Concrete microstructure, properties, and materials. McGraw-Hill, Columbus, United States.
[31] Shah, S. P., & Weiss, W. J. (2000). High performance concrete: strength, permeability, and shrinkage cracking. PCI/FHWA/FIB International Symposium on High Performance Concrete, 25-27 September, 2000, Orlando, United States.
[32] Aïtcin, P.-C. (1998). High Performance Concrete. CRC Press, London, United Kingdom.doi:10.4324/9780203475034.
[33] ACI CODE-318-25. (2025). Building Code for Structural Concrete—Code Requirements and Commentary (ACI CODE-318-25). American Concrete Institute (ACI), Farmington Hills, United States.
[34] CSA A23.3:24. (2024). Design of concrete structures. Canadian Standards Association (CSA), Toronto, Canada.
[35] EN 1992-1-1:2023. (2023). Eurocode 2: Design of concrete structures — part 1-1: General rules and rules for buildings, bridges and civil engineering structures. European Committee for Standardization (CEN), Brussels, Belgium.
- Authors retain all copyrights. It is noticeable that authors will not be forced to sign any copyright transfer agreements.
- This work (including HTML and PDF Files) is licensed under a Creative Commons Attribution 4.0 International License.![]()















