Enhancing AA6061–Bottom Ash Composites: Role of Heat Treatment on Properties and Dimensional Stability
Downloads
Aluminum matrix composites (AMCs) reinforced with industrial by-products have attracted attention as lightweight, sustainable materials, yet most research has focused on fly ash. The higher density of bottom ash compared to fly ash makes bottom ash suitable for use as reinforcement in AMC. This study investigates the combined effect of BA reinforcement (0, 3, and 6 wt%) and T6 heat treatment (aging at 175, 200, and 225 °C) on the microstructure, mechanical performance, thermal expansion, and dimensional stability of AA6061 composites. Mechanical testing, thermomechanical analysis (TMA), and coordinate measuring machine (CMM) evaluations were conducted to establish correlations between microstructure and macroscopic reliability. The results show that aging plays a decisive role in strengthening and stabilizing the alloy. The unreinforced AA6061 achieved peak hardness (69.43 BHN) and tensile strength (274.60 MPa) at 200 °C, but exhibited the largest distortion due to high thermal expansion. BA addition significantly reduced the mean coefficient of thermal expansion, with the 3 wt% BA composite aged at 200 °C demonstrating the most balanced behavior: stable CTE response, minimal distortion (0.1–0.4 mm²), and improved mechanical reliability. In contrast, 6 wt% BA composites, despite their lowest mean CTE (≈25 ppm/K), suffered from local instabilities due to particle agglomeration and porosity, leading to reduced toughness and higher geometric irregularities. Overall, this work highlights the novelty of employing BA as a sustainable reinforcement distinct from fly ash, showing that moderate BA addition coupled with optimized heat treatment can enhance dimensional stability and mechanical performance. The findings provide new insights into the design of cost-effective, environmentally friendly AMCs for structural applications.
Downloads
[1] Garg, P., Jamwal, A., Kumar, D., Sadasivuni, K. K., Hussain, C. M., & Gupta, P. (2019). Advance research progresses in aluminium matrix composites: manufacturing & applications. Journal of Materials Research and Technology, 8(5), 4924–4939. doi:10.1016/j.jmrt.2019.06.028.
[2] Ramanathan, A., Krishnan, P. K., & Muraliraja, R. (2019). A review on the production of metal matrix composites through stir casting – Furnace design, properties, challenges, and research opportunities. Journal of Manufacturing Processes, 42, 213–245. doi:10.1016/j.jmapro.2019.04.017.
[3] Bintoro, S. R., Surojo, E., Muhayat, N., & Triyono. (2025). A Comprehensive Review on Fusion Arc Welding of Aluminum Matrix Composites: Challenges, Mechanisms, and Advancements. Results in Engineering, 27, 10625. doi:10.1016/j.rineng.2025.106257.
[4] Li, X., Yan, H., Wang, Z. W., Li, N., Liu, J. L., & Nie, Q. (2019). Effect of heat treatment on the microstructure and mechanical properties of a composite made of Al-Si-Cu-Mg aluminum alloy reinforced with sic particles. Metals, 9(11), 1205. doi:10.3390/met9111205.
[5] Liu, G. F., Chen, T. J., & Wang, Z. J. (2021). Effects of solid solution treatment on microstructure and mechanical properties of SiCp/2024 Al composite: A comparison with 2024 Al alloy. Materials Science and Engineering: A, 817, 141413. doi:10.1016/j.msea.2021.141413.
[6] Zhou, H., Bhattarai, R., Li, Y., Si, B., Dong, X., Wang, T., & Yao, Z. (2022). Towards sustainable coal industry: Turning coal bottom ash into wealth. Science of the Total Environment, 804, 149985. doi:10.1016/j.scitotenv.2021.149985.
[7] Miracle, D. B. (2005). Metal matrix composites – From science to technological significance. Composites Science and Technology, 65(15–16), 2526–2540. doi:10.1016/j.compscitech.2005.05.027.
[8] Harish, T. M., Nandu Krishnan, A. U., Navas, N., & Sreekanth, K. A. (2023). Mechanical and microstructural characterization of aluminium metal matrix composite reinforced with bottom ash and fireclay. Materials Today: Proceedings, 72, 3154–3157. doi:10.1016/j.matpr.2022.10.168.
[9] Beemaraj, R. K., Ramesh, M., Subramaniyan, G. G., & Kamatchi, T. (2024). A study on mechanical and tribological properties of AMMC through stir casting process. Interactions, 245(1), 334. doi:10.1007/s10751-024-02177-5.
[10] Iqbal, A. A., & Amierah, N. (2017). Effect of reinforcement volume fraction on the mechanical properties of the Al-SiC nanocomposite materials. IOP Conference Series: Materials Science and Engineering, 226(1), 12168. doi:10.1088/1757-899X/226/1/012168.
[11] Yuan, Z., Tian, W., Li, F., Fu, Q., Wang, X., Qian, W., & An, W. (2020). Effect of heat treatment on the interface of high-entropy alloy particles reinforced aluminum matrix composites. Journal of Alloys and Compounds, 822, 153658. doi:10.1016/j.jallcom.2020.153658.
[12] Rajkeerthi, E., Satyanarayan, C. P., Jaivignesh, M., Pradeep, N., & Hariharan, P. (2019). Effect of heat treatment on strength of aluminium matrix composites. Materials Today: Proceedings, 46, 4419–4425. doi:10.1016/j.matpr.2020.09.672.
[13] Xu, K., Wang, J., & Zhang, S. (2020). Effect of heat treatment on the microstructure and properties of in-situ Mg2Si reinforced hypereutectic Al-18%Si matrix composites. Materials Research Express, 7(8), 086515. doi:10.1088/2053-1591/abaea2.
[14] Ren, S., Tao, X., Xu, X., Guo, A., Liu, J., Fan, J., ... & Liang, J. (2018). Preparation and characteristic of the fly ash cenospheres/mullite composite for high-temperature application. Fuel, 233, 336-345. doi:10.1016/j.fuel.2018.06.058.
[15] Gong, D., Zhu, M., Cao, Y., Qian, J., Chao, Z., Xiu, Z., & Jiang, L. (2023). Revealing the mechanism of internal stress on dimensional stability in SiC/Al composites under long-term thermal exposure. Vacuum, 209, 111786. doi:10.1016/j.vacuum.2022.111786.
[16] Gong, D., Cao, Y., Chao, Z., Xiu, Z., & Jiang, L. (2022). Revealing the Effect of Internal Stress on Dimensional Stability of Sic/Al Composites under Long-Term Thermal Exposure. SSRN Electronic Journal, 1-27. doi:10.2139/ssrn.4170559.
[17] Kumar, R., Bairwa, K. N., Vemanaboina, H., Naidu, B. V. V., Shoush, K. A., Pushkarna, M., Tuka, M. B., & Ghoneim, S. S. M. (2024). Enhancing wear resistance of aluminum 6061 composites with fly ash: A sustainable approach for industrial applications. Advances in Mechanical Engineering, 16(10), 1–11. doi:10.1177/16878132241290913.
[18] Ravichandran, M., Balasubramanian, M., Anand Chairman, C., Marichamy, S., Dhinakaran, V., & Stalin, B. (2020). Mechanical properties of Fly ash reinforced Aluminium matrix composites. IOP Conference Series: Materials Science and Engineering, 988(1), 12095. doi:10.1088/1757-899X/988/1/012095.
[19] Muhardi, A., Marto, A., Kassim, K. A., Makhtar, A. M., Wei, L. F., & Lim, Y. S. (2010). Engineering characteristics of Tanjung Bin coal ash. Electronic Journal of Geotechnical Engineering, 15 K, 1117–1129.
[20] Krishnakumar, M., Hariharan, J., & Saravanan, R. (2019). Effect on distribution of siderite on aluminium-7% silicon alloy by stir casting. Materials Today: Proceedings, 27, 2418–2423. doi:10.1016/j.matpr.2019.09.202.
[21] Patil, C. S., Ansari, M. I., Selvan, R., & Thakur, D. G. (2021). Influence of micro B4C ceramic particles addition on mechanical and wear behavior of aerospace grade Al-Li alloy composites. Sādhanā, 46(1), 11. doi:10.1007/s12046-020-01543-7.
[22] Rajasekaran, S., Udayashankar, N. K., & Nayak, J. (2012). T4 and T6 Treatment of 6061 Al-15 Vol. % SiC P Composite. ISRN Materials Science, 2012, 1–5. doi:10.5402/2012/374719.
[23] Shankar, K. V., Jezierski, J., Ramalingam, V. V., Padmakumar, D., Leena, M. R., Amal, A., Reghunath, G., & Krishnan, R. (2022). Investigating the Effect of Fly Ash Addition on the Metallurgical and Mechanical Behavior of Al-Si-Mg-Cu Alloy for Engine Cylinder Head Application. Materials, 15(15), 5462. doi:10.3390/ma15155462.
[24] Juang, S. H., & Li, C. F. (2022). Influence of Different Addition Ratios of Fly Ash on Mechanical Properties of ADC10 Aluminum Matrix Composites. Metals, 12(4), 653. doi:10.3390/met12040653.
[25] Herman, A. P., Yusup, S., Shahbaz, M., & Patrick, D. O. (2016). Bottom Ash Characterization and its Catalytic Potential in Biomass Gasification. Procedia Engineering, 148, 432–436. doi:10.1016/j.proeng.2016.06.447.
[26] Das, D. K., Mishra, P. C., Singh, S., & Thakur, R. K. (2014). Properties of ceramic-reinforced aluminium matrix composites- A review. International Journal of Mechanical and Materials Engineering, 9(1), 12. doi:10.1186/s40712-014-0012-9.
[27] Sharma, S. K., Gajević, S., Sharma, L. K., Pradhan, R., Sharma, Y., Miletić, I., & Stojanović, B. (2024). Progress in Aluminum-Based Composites Prepared by Stir Casting: Mechanical and Tribological Properties for Automotive, Aerospace, and Military Applications. Lubricants, 12(12), 421. doi:10.3390/lubricants12120421.
[28] Sharma, V. K., Singh, R. C., & Chaudhary, R. (2017). Effect of flyash particles with aluminium melt on the wear of aluminium metal matrix composites. Engineering Science and Technology, an International Journal, 20(4), 1318–1323. doi:10.1016/j.jestch.2017.08.004.
[29] Razzaq, A. M., Majid, D. L., Ishak, M. R., & Basheer, U. M. (2017). Effect of fly ash addition on the physical and mechanical properties of AA6063 alloy reinforcement. Metals, 7(11), 477. doi:10.3390/met7110477.
[30] Kareem, A., Qudeiri, J. A., Abdudeen, A., Ahammed, T., & Ziout, A. (2021). A review on AA 6061 metal matrix composites produced by stir casting. Materials, 14(1), 1–22. doi:10.3390/ma14010175.
[31] Zulfia, A., Ramdaniawati, D., & Dhaneswara, D. (2018). The Role of Al2O3 Nanoparticles Addition on Characteristic of Al6061 Composite Produced by Stir Casting Process. International Journal of Materials Science and Engineering, 6(2), 39–47. doi:10.17706/ijmse.2018.6.2.39-47.
[32] Zhu, H., Guo, G., Cui, T., Huang, J., Li, J., & Xie, Z. (2015). Influences of carbon additions on reaction mechanisms and tensile properties of Al-based composites synthesized in-situ by Al-SiO2 powder system. Materials Science and Engineering: A, 623, 78–82. doi:10.1016/j.msea.2014.11.043.
[33] Liu, K., Mirza, F. A., & Chen, X. G. (2018). Effect of overaging on the cyclic deformation behavior of an AA6061 aluminum alloy. Metals, 8(7), 528. doi:10.3390/met8070528.
[34] DiCecco, S., Di Ciano, M., Baghbanaghaie, N., Esmaeili, S., Wells, M. A., & Worswick, M. J. (2023). Warm Aging of Pre-aged AA6013 Sheet and Its Relevance to Room Temperature and Warm Forming Applications—Experimental and Modeling Analyses. Journal of Materials Engineering and Performance, 32(21), 9797–9813. doi:10.1007/s11665-023-08216-6.
[35] Siddesh Kumar, N. M., Dhruthi, Pramod, G. K., Samrat, P., & Sadashiva, M. (2022). A Critical Review on Heat Treatment of Aluminium Alloys. Materials Today: Proceedings, 58, 71–79. doi:10.1016/j.matpr.2021.12.586.
[36] Dwivedi, S. P., Srivastava, A. K., Maurya, N. K., & Maurya, M. (2019). Microstructure and mechanical properties of Al 6061/Al2O3/Fly-Ash composite fabricated through stir casting. Annales de Chimie: Science Des Materiaux, 43(5), 341–348. doi:10.18280/acsm.430510.
[37] Singh, B., Grewal, J. S., & Sharma, S. (2021). Effect of addition of flyash and graphite on the mechanical properties of A6061-T6. Materials Today: Proceedings, 50, 2411–2415. doi:10.1016/j.matpr.2021.10.258.
[38] Razzaq, A. M., Majid, D. L., Basheer, U. M., & Aljibori, H. S. S. (2021). Research summary on the processing, mechanical and tribological properties of aluminium matrix composites as effected by fly ash reinforcement. Crystals, 11(10), 1212. doi:10.3390/cryst11101212.
[39] Kumar, S., Bera, S., Mandal, D., & Chakraborty, A. K. (2025). Transforming waste red mud and fly ash to wealth by designing a hybrid Al alloy composite with improved mechanical and tribological properties. Materialwissenschaft Und Werkstofftechnik, 56(1), 122–131. doi:10.1002/mawe.202300378.
[40] Medvecká, D., Kuchariková, L., & Uhríčik, M. (2020). The failure degradation of recycled aluminium alloys with high content of β-al5fesi intermetallic phases. Defect and Diffusion Forum, 403 DDF, 97–102. doi:10.4028/www.scientific.net/DDF.403.97.
[41] Mathew, J., Remy, G., Williams, M. A., Tang, F., & Srirangam, P. (2019). Effect of Fe Intermetallics on Microstructure and Properties of Al-7Si Alloys. JOM, 71(12), 4362–4369. doi:10.1007/s11837-019-03444-5.
[42] Shetty, A., Bhat, T., Sharma, S., Hegde, A., K, N., Prabhu, R., & Anne, G. (2025). Effects of Magnesium Content and Age Hardening Parameters on the Hardness and Ultimate Tensile Strength of SiC-Reinforced Al-Si-Mg Composites. Journal of Composites Science, 9(1), 5. doi:10.3390/jcs9010005.
[43] Hegde, A., Birur Manjunathaiah, K., Sharma, S., Mandya Chennegowda, G., Anne, G., & Sadanand, R. V. (2024). Hybrid Treatment and Natural Aging Behavior of Peak-Aged Eutectoid Steel Powder-Reinforced Al 7075 Matrix Composites. Journal of Composites Science, 8(3), 89. doi:10.3390/jcs8030089.
[44] Madhusudan, S., Sarcar, M. M. M., & Rao, N. B. R. M. (2016). Mechanical properties of Aluminum-Copper(p) composite metallic materials. Journal of Applied Research and Technology, 14(5), 293–299. doi:10.1016/j.jart.2016.05.009.
[45] Doddamani, S., & Kaleemulla, M. (2019). Effect of graphite on fracture toughness of 6061Al-graphite. Strength, Fracture and Complexity, 11(4), 295–308. doi:10.3233/sfc-180230.
[46] Rong, X., Chen, X., Zhao, D., Zhang, X., He, C., Shi, C., & Zhao, N. (2023). Effect of aging treatment on microstructure and mechanical properties of Al matrix composite reinforced by in-situ intragranular Al2O3. Materials Characterization, 204, 113215. doi:10.1016/j.matchar.2023.113215.
[47] Das, D., Samal, C., Chaubey, A. K., & Nayak, R. K. (2019). Influence of thermal treatment and reinforcement content on properties of aluminium matrix composites: A case study. Materials Today: Proceedings, 18, 3262–3267. doi:10.1016/j.matpr.2019.07.202.
[48] Cheneke, S., & Benny Karunakar, D. (2019). The effect of solution treatment on aging behavior and mechanical properties of AA2024-TiB2 composite synthesized by semi-solid casting. SN Applied Sciences, 1(11), 1501. doi:10.1007/s42452-019-1531-z.
[49] Liu, F., Yu, F., & Zhao, D. (2022). Aging Behavior and Precipitates Analysis of Wrought Al-Si-Mg Alloy. Materials, 15(22), 8194. doi:10.3390/ma15228194.
[50] Meyruey, G., Massardier, V., & Perez, M. (2020). Aging of an Al-Mg-Si Alloy with a Silicon Excess and Reinforced with Ceramic Particles. Metallurgical and Materials Transactions A, 51(6), 3124–3141. doi:10.1007/s11661-020-05736-x.
[51] Jiang, G. D., Cai, Y. H., Qiu, C., Zhang, W. W., & Zhang, D. T. (2022). Effect of over-aging on the microstructure, mechanical properties and crashing performance of thin-walled Al-Mg-Si-Cu alloy profiles. Journal of Materials Research and Technology, 21, 3074–3085. doi:10.1016/j.jmrt.2022.10.137.
[52] Ahmadian, H., Zhou, T., Alansari, A., Kumar, A. S., Fathy, A., Elmahdy, M., Yu, Q., & Weijia, G. (2024). Microstructure, mechanical properties and wear behavior of Mg matrix composites reinforced with Ti and nano SiC particles. Journal of Materials Research and Technology, 31, 4088–4103. doi:10.1016/j.jmrt.2024.07.125.
[53] Liu, L., Hou, Y., Ye, T., Zhang, L., Huang, X., Gong, Y., Liu, C., Wu, Y., & Duan, S. (2024). Effects of Aging Treatments on the Age Hardening Behavior and Microstructures in an Al-Mg-Si-Cu Alloy. Metals, 14(2), 238. doi:10.3390/met14020238.
[54] Tang, H. P., Wang, Q. D., Luo, C., Lei, C., Liu, T. W., Li, Z. Y., Jiang, H. Y., Ding, W. J., Fang, J., & Zhang, J. W. (2020). Effects of aging treatment on the precipitation behaviors and mechanical properties of Al-5.0Mg-3.0Zn-1.0Cu cast alloys. Journal of Alloys and Compounds, 842, 155707. doi:10.1016/j.jallcom.2020.155707.
[55] Vasanth Kumar, H. S., Revanna, K., Kumar, N., Sathyanarayana, N., Madeva, N., Manjunath, G. A., & Adisu, H. (2022). Impact of Silicon Carbide Particles Weight Percentage on the Microstructure, Mechanical Behaviour, and Fractography of Al2014 Alloy Composites. Advances in Materials Science and Engineering, 2839150, 10. doi:10.1155/2022/2839150.
[56] Nordin, S. S., Mhd Noor, E. E., & Chockalingam, P. (2024). Chemical and Thermal Analysis of Fly Ash-Reinforced Aluminum Matrix Composites (AMCs). Journal of Composites Science, 8(5), 170. doi:10.3390/jcs8050170.
[57] Uju, W. A., & Oguocha, I. N. A. (2012). A study of thermal expansion of Al-Mg alloy composites containing fly ash. Materials and Design, 33(1), 503–509. doi:10.1016/j.matdes.2011.04.056.
[58] Chen, G. Q., Xiu, Z. Y., Yang, W. S., Jiang, L. T., & Wu, G. H. (2010). Effect of thermal-cooling cycle treatment on thermal expansion behavior of particulate reinforced aluminum matrix composites. Transactions of Nonferrous Metals Society of China (English Edition), 20(11), 2143–2147. doi:10.1016/S1003-6326(09)60432-5.
[59] Fu, L., Wu, G., Zhou, C., Xiu, Z., Yang, W., & Qiao, J. (2021). Effect of microstructure on the dimensional stability of extruded pure aluminum. Materials, 14(17), 4797. doi:10.3390/ma14174797.
[60] Xiao, L. R., Tu, X. X., Zhao, X. J., Cai, Z. Y., & Song, Y. F. (2020). Microstructural evolution and dimensional stability of TiC-reinforced steel matrix composite during tempering. Materials Letters, 259, 126871. doi:10.1016/j.matlet.2019.126871.
- Authors retain all copyrights. It is noticeable that authors will not be forced to sign any copyright transfer agreements.
- This work (including HTML and PDF Files) is licensed under a Creative Commons Attribution 4.0 International License.![]()















