Predicting Speeding Behavior of Long-Haul Freight Truck Drivers Using Machine Learning Models
Downloads
The behavior of long-haul truck drivers is shaped by the weak enforcement of working-hour rules, tight deadlines, and heavy workloads. Over-dimensioning and overloading practices further increase risks by forcing drivers to handle excessive loads and work for prolonged periods. This study predicts speeding behavior among long-haul freight truck drivers using statistical and machine learning models. Data was collected from 370 respondents at two weigh stations in South Sulawesi, Indonesia, covering eight socio-demographic, economic, and operational predictors. Three models were tested: Binary Logistic Regression (BLR), Random Forest (RF), and Extreme Gradient Boosting (XGBoost). The dataset was balanced and split into 70% training and 30% testing, with performance assessed using accuracy, recall, F1-score, and AUROC. XGBoost delivered the best results, achieving 97.3% accuracy, 93.2% recall, a 96.4% F1-score, and a perfect AUROC of 1.000. RF also showed strong performance with 94.05% accuracy and an AUROC of 0.973, while BLR served as a relevant baseline despite weaker predictions. Key predictors of speeding violations were daily sleep duration, monthly income, and driving experience. This study demonstrates how machine learning can be effectively integrated alongside transportation data under imbalanced conditions, providing evidence-based insights to strengthen freight transport safety.
Downloads
[1] Abolhoseini, S., Regehr, J. D., & Mehran, B. (2025). Estimating temporal truck traffic patterns on rural highway systems: A spatially-aware machine learning approach. Journal of Transport Geography, 128, 104345. doi:10.1016/j.jtrangeo.2025.104345.
[2] Basso, F., des Rotours, F., Maldonado, T., Pezoa, R., & Varas, M. (2025). Detecting heavy trucks from mobile phone trajectories using image-based behavioral representations and deep learning models. Scientific Reports, 15(1), 1–14. doi:10.1038/s41598-025-06711-5.
[3] Islam, M., & Mahmud, A. (2025). Unveiling the speeding behavior: Assessing the speeding risks and driver injury severities in single-heavy truck crashes. Safety Science, 187, 106861. doi:10.1016/j.ssci.2025.106861.
[4] Zhong, Y., & Qian, D. (2024). The causal effect of unsafe driving behavior of heavy-duty trucks on accident casualties. Proceedings of the 2024 International Conference on Intelligent Driving and Smart Transportation, 96–101. doi:10.1145/3704657.3704674.
[5] Casey, G. J., Miles-Johnson, T., & Stevens, G. J. (2024). Heavy vehicle driver fatigue: Observing work and rest behaviours of truck drivers in Australia. Transportation Research Part F: Traffic Psychology and Behaviour, 104, 136–153. doi:10.1016/j.trf.2024.05.016.
[6] Crizzle, A. M., McLean, M., & Malkin, J. (2020). Risk factors for depressive symptoms in long-haul truck drivers. International Journal of Environmental Research and Public Health, 17(11), 3764. doi:10.3390/ijerph17113764.
[7] Williamson, A., Lombardi, D. A., Folkard, S., Stutts, J., Courtney, T. K., & Connor, J. L. (2011). The link between fatigue and safety. Accident Analysis and Prevention, 43(2), 498–515. doi:10.1016/j.aap.2009.11.011.
[8] Budiharjo, A., Andika, T., Fitriani, N., Rukman, R., & Turasno, B. (2022). Operational Data Analytics of Over Dimensional and Overloaded Truck in Indonesia. RSF Conference Series: Engineering and Technology, 2(2), 88–98. doi:10.31098/cset.v2i2.562.
[9] Amallia, C. T., & Chymaida, Z. V. (2023). Carrier's Responsibility for Delivery of Goods Due to Overdimension and Overloading in Land Transportation Activities. Jurnal Ilmiah Universitas Batanghari Jambi, 23(2), 1550. doi:10.33087/jiubj.v23i2.3549. (In Indonesian).
[10] Ajayi, O. O., Kurien, A. M., Djouani, K., & Dieng, L. (2024). Analysis of Road Roughness and Driver Comfort in ‘Long-Haul’ Road Transportation Using Random Forest Approach. Sensors, 24(18), 6115. doi:10.3390/s24186115.
[11] Shandhana Rashmi, B., & Marisamynathan, S. (2024). Investigating the contributory factors influencing speeding behavior among long-haul truck drivers traveling across India: Insights from binary logit and machine learning techniques. International Journal of Transportation Science and Technology, 16, 194–211. doi:10.1016/j.ijtst.2024.01.008.
[12] Afghari, A. P., Papadimitriou, E., Pilkington-Cheney, F., Filtness, A., Brijs, T., Brijs, K., Cuenen, A., De Vos, B., Dirix, H., Ross, V., Wets, G., Lourenço, A., & Rodrigues, L. (2022). Investigating the effects of sleepiness in truck drivers on their headway: An instrumental variable model with grouped random parameters and heterogeneity in their means. Analytic Methods in Accident Research, 36, 100241. doi:10.1016/j.amar.2022.100241.
[13] Meyer, L., Goedhals-Gerber, L. L., & Bod, A. De. (2025). A systematic review of incentive schemes and their implications for truck driver safety performance. Journal of Safety Research, 92, 166–180. doi:10.1016/j.jsr.2024.11.023.
[14] Altalhan, M., Algarni, A., & Turki-Hadj Alouane, M. (2025). Imbalanced Data Problem in Machine Learning: A Review. IEEE Access, 13, 13686–13699. doi:10.1109/ACCESS.2025.3531662.
[15] Wu, O. (2023). Rethinking class imbalance in machine learning. arXiv Preprint, arXiv:2305.03900. doi:10.48550/arXiv.2305.03900.
[16] Niu, Y., Li, Z., & Fan, Y. (2021). Analysis of truck drivers’ unsafe driving behaviors using four machine learning methods. International Journal of Industrial Ergonomics, 86, 103192. doi:10.1016/j.ergon.2021.103192.
[17] Fonseca, T., & Ferreira, S. (2025). Monitoring Technologies for Truck Drivers: A Systematic Review of Safety and Driving Behavior. Applied Sciences (Switzerland), 15(12), 6513. doi:10.3390/app15126513.
[18] Mobini Seraji, M. H., Shaffiee Haghshenas, S., Shaffiee Haghshenas, S., Simic, V., Pamucar, D., Guido, G., & Astarita, V. (2025). A state-of-the-art review on machine learning techniques for driving behavior analysis: clustering and classification approaches. Complex & Intelligent Systems, 11(9), 386. doi:10.1007/s40747-025-01988-5.
[19] Crizzle, A. M., Toxopeus, R., & Malkin, J. (2020). Impact of limited rest areas on truck driver crashes in Saskatchewan: A mixed-methods approach. BMC Public Health, 20(1), 1–10. doi:10.1186/s12889-020-09120-7.
[20] Li, T., Chang, B., Sun, Y., Zhou, Y., Zhou, B., & Zhang, L. (2025). Development and application of a generalized fatigue driving monitoring system for open-pit mining vehicles: A case study in a Myanmar copper mine. Results in Engineering, 26, 105206. doi:10.1016/j.rineng.2025.105206.
[21] Li, X., Zhang, W., Li, Q., & Chen, F. (2025). Analysis of driver Lane-Changing behavior under the influence of truck platoons at highway Exits: A driving simulation study. Transportation Research Part F: Traffic Psychology and Behaviour, 113, 174–193. doi:10.1016/j.trf.2025.04.029.
[22] Pradhan, A. K., Lin, B. T. W., Wege, C., & Babel, F. (2024). Effects of Behavior-Based Driver Feedback Systems on the Speeding Violations of Commercial Long-Haul Truck Drivers. Safety, 10(1), 1–11. doi:10.3390/safety10010024.
[23] Afrin, T., & Yodo, N. (2020). A survey of road traffic congestion measures towards a sustainable and resilient transportation system. Sustainability (Switzerland), 12(11), 1–23. doi:10.3390/su12114660.
[24] Guo, Y., Li, L., Sun, Z., Wang, J., & Fu, X. (2025). A Freight Truck Stopping Behavior Prediction Approach Based on Trajectory Dataset. International Journal of Intelligent Transportation Systems Research, 23(1), 475–488. doi:10.1007/s13177-025-00462-3.
[25] Liang, Y., Yuan, H., Wang, Z., Wan, Z., Liu, T., Wu, B., Chen, S., & Tang, X. (2024). Nonlinear effects of traffic statuses and road geometries on highway traffic accident severity: A machine learning approach. PLOS ONE, 19(11), e0314133. doi:10.1371/journal.pone.0314133.
[26] Yang, C., Liu, J., Zhang, Z., Kofi Adanu, E., Penmetsa, P., & Jones, S. (2025). A machine learning approach to understanding the road and traffic environments of crashes involving driver distraction and inattention (DDI) on rural multilane highways. Journal of Safety Research, 92, 14–26. doi:10.1016/j.jsr.2024.11.011.
[27] Sohail, A. M., Teh, Y. W., Khan, N., Khan, Z., & Koubaa, A. (2024). A Comprehensive Review: Analysis of Machine Learning, Deep Learning, and Large Language Model Techniques for Revolutionizing Driver Identification. TechRxiv, Preprinnt, 1-33. doi:10.36227/techrxiv.170974128.87339641/v1.
[28] Alrajhi, A., Roy, K., Kribs, J., & Almalki, S. S. (2025). Automated Detection of Road Defects Using LSTM and Random Forest. IEEE Access, 13, 76857–76867. doi:10.1109/ACCESS.2025.3564172.
[29] Wu, J., Zhang, Z., Wang, Y., Zhang, Y., & Tian, Y. (2024). Method for Identifying Dangerous Driving Behaviors in Heavy-duty Trucks Based on Multi-modal Data. Journal of Transportation Systems Engineering and Information Technology, 24(2), 63–75. doi:10.16097/j.cnki.1009-6744.2024.02.007.
[30] Xue, Z., Xu, H., Cui, H., & Peng, W. (2025). A machine learning-incorporated heuristic column generation algorithm for truck grouping and scheduling problem in trailer-swapping transport mode. Expert Systems with Applications, 278, 127327. doi:10.1016/j.eswa.2025.127327.
[31] Ebrahimi, H., Vosoughi, S., Hosseini, A. F., & Hatami, A. (2024). Comprehensive survey of the truck transportation process: The impact of team driving on health and safety conditions. Heliyon, 10(18), 37880. doi:10.1016/j.heliyon.2024.e37880.
[32] Nadler, S. S., & Kros, J. F. (2018). Truck Driver Turnover. Contemporary Approaches and Strategies for Applied Logistics, 382–404, IGI Global Scientific Publishing, Hershey, United States. doi:10.4018/978-1-5225-5273-4.ch016.
[33] Alotaibi, Y., Nagappan, K., Thanarajan, T., & Rajendran, S. (2025). Optimal deep learning based vehicle detection and classification using chaotic equilibrium optimization algorithm in remote sensing imagery. Scientific Reports, 15(1), 1–16. doi:10.1038/s41598-025-02491-0.
[34] Imani, M., Beikmohammadi, A., & Arabnia, H. R. (2025). Comprehensive Analysis of Random Forest and XGBoost Performance with SMOTE, ADASYN, and GNUS Under Varying Imbalance Levels. Technologies, 13(3), 1–40. doi:10.3390/technologies13030088.
[35] Hosmer, D. W., Lemeshow, S., & Sturdivant, R. X. (2000). Introduction to the logistic regression model. Applied logistic regression, 2, 1-30, John Wiley & Sons, Hoboken, United States. doi:10.1002/9781118548387.ch1.
[36] Menard, S. (2011). Applied Logistic Regression Analysis. SAGE publications, Thousand Oaks, United States. doi:10.4135/9781412983433.
[37] Johnson, J. M., & Khoshgoftaar, T. M. (2019). Survey on deep learning with class imbalance. Journal of Big Data, 6(1), 1-54. doi:10.1186/s40537-019-0192-5.
[38] Field, A. (2024). Discovering statistics using IBM SPSS statistics. SAGE publications, Thousand Oaks, United States.
[39] Jin, Z., Shang, J., Zhu, Q., Ling, C., Xie, W., & Qiang, B. (2020). RFRSF: Employee Turnover Prediction Based on Random Forests and Survival Analysis. Web Information Systems Engineering – WISE 2020. WISE 2020, Lecture Notes in Computer Science, vol 12343, Springer, Cham, Switzerland. doi:10.1007/978-3-030-62008-0_35.
[40] Hasanin, T., Khoshgoftaar, T. M., Leevy, J. L., & Bauder, R. A. (2019). Severely imbalanced Big Data challenges: investigating data sampling approaches. Journal of Big Data, 6(1). doi:10.1186/s40537-019-0274-4.
[41] Chen, T., & Guestrin, C. (2016). XGBoost. Proceedings of the 22nd ACM SIGKDD International Conference on Knowledge Discovery and Data Mining, 785–794. doi:10.1145/2939672.2939785.
[42] Fawcett, T. (2006). An introduction to ROC analysis. Pattern Recognition Letters, 27(8), 861-874. doi:10.1016/j.patrec.2005.10.010.
[43] Domínguez-Almendros, S., Benítez-Parejo, N., & Gonzalez-Ramirez, A. R. (2011). Logistic regression models. Allergologia et Immunopathologia, 39(5), 295–305. doi:10.1016/j.aller.2011.05.002.
[44] Meyer, D., Muir, S., Silva, S. S. M., Slikboer, R., McIntyre, A., Imberger, K., & Pyta, V. (2021). Modelling the relationship of driver license and offense history with fatal and serious injury (FSI) crash involvement. Journal of Safety Research, 79, 83–93. doi:10.1016/j.jsr.2021.08.008.
- Authors retain all copyrights. It is noticeable that authors will not be forced to sign any copyright transfer agreements.
- This work (including HTML and PDF Files) is licensed under a Creative Commons Attribution 4.0 International License.![]()















