Finite Element Analysis of Concrete Beams Reinforced with Basalt Fiber-Reinforced Polymer
Downloads
The increasing demand for corrosion-resistant reinforcement in concrete structures has highlighted the potential of basalt fiber-reinforced polymer (BFRP) bars as a sustainable alternative to conventional steel reinforcement. However, the flexural behavior of BFRP-reinforced concrete beams remains insufficiently characterized, particularly through advanced numerical simulation. This study develops and validates a finite element model (FEM) to analyze the flexural performance of BFRP-reinforced concrete beams and to compare it with that of steel-reinforced beams. Eight beam specimens (200 × 300 × 3,100 mm), including six reinforced with BFRP bars and two with steel bars, were modeled under four-point bending using ANSYS software. The FEM predictions were validated against experimental data and benchmarked with the design provisions of ACI 440.1R-15 and CSA S806-12. The model showed strong agreement with experimental results, yielding ultimate load ratios of 0.92–0.94 for steel-reinforced beams and 1.01–1.45 for BFRP-reinforced beams. At higher reinforcement ratios, FEM predictions tended to overestimate the capacity of BFRP-reinforced beams. While steel-reinforced beams exhibited ductile failure, BFRP-reinforced beams failed in a brittle manner. The predicted moment-deflection responses and crack patterns closely matched both experimental observations and code-based predictions. This validated FEM provides a reliable computational framework for assessing and optimizing the design of BFRP-reinforced concrete beams, thereby advancing the application of non-metallic reinforcement in structural engineering. The findings also highlight challenges in accurately modeling concrete crushing and bond behavior within FEM, indicating directions for future refinement.
Downloads
[1] Madotto, R., Van Engelen, N. C., Das, S., Russo, G., & Pauletta, M. (2021). Shear and flexural strengthening of RC beams using BFRP fabrics. Engineering Structures, 229. doi:10.1016/j.engstruct.2020.111606.
[2] Siddika, A., Mamun, M. A. Al, Alyousef, R., & Amran, Y. H. M. (2019). Strengthening of reinforced concrete beams by using fiber-reinforced polymer composites: A review. Journal of Building Engineering, 25. doi:10.1016/j.jobe.2019.100798.
[3] Sorrentino, L., Turchetta, S., & Bellini, C. (2017). In process monitoring of cutting temperature during the drilling of FRP laminate. Composite Structures, 168, 549–561. doi:10.1016/j.compstruct.2017.02.079.
[4] Ou, Y., & Zhu, D. (2015). Tensile behavior of glass fiber reinforced composite at different strain rates and temperatures. Construction and Building Materials, 96, 648–656. doi:10.1016/j.conbuildmat.2015.08.044.
[5] Naser, M. Z., Hawileh, R. A., & Abdalla, J. (2021). Modeling strategies of finite element simulation of reinforced concrete beams strengthened with FRP: A review. Journal of Composites Science, 5(1), 19. doi:10.3390/jcs5010019.
[6] Rajak, D., Pagar, D., Menezes, P., & Linul, E. (2019). Fiber-Reinforced Polymer Composites: Manufacturing, Properties, and Applications. Polymers, 11(10), 1667. doi:10.3390/polym11101667.
[7] Fan, X., Gu, S., Wu, X., & Jiang, J. (2020). Critical shear crack theory-based punching shear model for FRP-reinforced concrete slabs. Advances in Structural Engineering, 24(6), 1208–1220. doi:10.1177/1369433220978146.
[8] Abbood, I. S., Odaa, S. A., Hasan, K. F., & Jasim, M. A. (2021). Properties evaluation of fiber reinforced polymers and their constituent materials used in structures - A review. Materials Today: Proceedings, 43, 1003–1008. doi:10.1016/j.matpr.2020.07.636.
[9] Feng, X., Liu, D., Guo, Y., Zhong, F., Zuo, J., & Liu, W. (2024). Research on mechanical performance of longitudinal joints in segmental tunnel linings strengthened by fiber-reinforced plastic grid with polymer-cement-mortar method. Frontiers of Structural and Civil Engineering, 18(10), 1610–1625. doi:10.1007/s11709-024-1105-z.
[10] Qiong, T., Jha, I., Bahrami, A., Isleem, H. F., Kumar, R., & Samui, P. (2024). Proposed numerical and machine learning models for fiber-reinforced polymer concrete-steel hollow and solid elliptical columns. Frontiers of Structural and Civil Engineering, 18(8), 1169–1194. doi:10.1007/s11709-024-1083-1.
[11] ACI 440.1R-15. (2015). Guide for the Design and Construction of Concrete Reinforced with FRP Bars. American Concrete Institute (ACI), Farmington Hills, United States.
[12] CAN/CSA S806-12. (2012). Design and Construction of Building Components with Fibre Reinforced Polymers. Canadian Standard Association (CSA), Toronto, Canada.
[13] Sirimontree, S., Keawsawasvong, S., & Thongchom, C. (2021). Flexural behavior of concrete beam reinforced with GFRP bars compared to concrete beam reinforced with conventional steel reinforcements. Journal of Applied Science and Engineering, 24(6), 883–890. doi:10.6180/jase.202112_24(6).0009.
[14] Sivasankar, S., Dhal, L., Gopalakrishnan, R., Velrajkumar, G., & Jose, A. (2023). Strength and ductility of reinforced concrete using basalt fibre-reinforced polymers. Polymer Bulletin, 81(7), 6473–6493. doi:10.1007/s00289-023-05010-1.
[15] Deng, J., Liu, A., Ma, Z. J., Huang, P., & Zhou, R. (2015). Interfacial Behavior of RC Beams Strengthened with FRP under Fatigue Loading. Advances in Structural Engineering, 18(2), 283–293. doi:10.1260/1369-4332.18.2.283.
[16] He, J., Lei, D., She, Z., & Xi, B. (2023). Investigation on bonding behavior of basalt fiber reinforced polymer (BFRP) sheet reinforced concrete beam. Journal of Building Engineering, 75. doi:10.1016/j.jobe.2023.106963.
[17] Ibrahim, A. M., & Fawzy, M. S. (2023). Strengthening of RC flat slabs against punching shear with GFRP laminates adopting a hybrid technique. Engineering and Applied Science Research, 50(5), 490–498. doi:10.14456/easr.2023.51.
[18] Monaldo, E., Nerilli, F., & Vairo, G. (2019). Basalt-based fiber-reinforced materials and structural applications in civil engineering. Composite Structures, 214, 246–263. doi:10.1016/j.compstruct.2019.02.002.
[19] Liu, K., Wulan, T., Yao, Y., Bian, M., & Bao, Y. (2024). Assessment of damage evolution of concrete beams strengthened with BFRP sheets with acoustic emission and unsupervised machine learning. Engineering Structures, 300. doi:10.1016/j.engstruct.2023.117228.
[20] Al-Hamrani, A., & Alnahhal, W. (2023). Bond durability of sand coated and ribbed basalt FRP bars embedded in high-strength concrete. Construction and Building Materials, 406. doi:10.1016/j.conbuildmat.2023.133385.
[21] Yeboah, D., Taylor, S., McPolin, D., & Gilfillan, R. (2013). Pull-out behaviour of axially loaded Basalt Fibre Reinforced Polymer (BFRP) rods bonded perpendicular to the grain of glulam elements. Construction and Building Materials, 38, 962–969. doi:10.1016/j.conbuildmat.2012.09.014.
[22] Attia, K., Alnahhal, W., Elrefai, A., & Rihan, Y. (2019). Flexural behavior of basalt fiber-reinforced concrete slab strips reinforced with BFRP and GFRP bars. Composite Structures, 211, 1–12. doi:10.1016/j.compstruct.2018.12.016.
[23] Zheng, Y., Zhang, Y., Zhuo, J., Zhang, Y., & Wan, C. (2022). A review of the mechanical properties and durability of basalt fiber-reinforced concrete. Construction and Building Materials, 359, 129360. doi:10.1016/j.conbuildmat.2022.129360.
[24] Elgabbas, F., Ahmed, E. A., & Benmokrane, B. (2017). Flexural Behavior of Concrete Beams Reinforced with Ribbed Basalt-FRP Bars under Static Loads. Journal of Composites for Construction, 21(3). doi:10.1061/(asce)cc.1943-5614.0000752.
[25] High, C., Seliem, H. M., El-Safty, A., & Rizkalla, S. H. (2015). Use of basalt fibers for concrete structures. Construction and Building Materials, 96, 37–46. doi:10.1016/j.conbuildmat.2015.07.138.
[26] El Refai, A., Alnahhal, W., Al-Hamrani, A., & Hamed, S. (2022). Shear performance of basalt fiber-reinforced concrete beams reinforced with BFRP bars. Composite Structures, 288. doi:10.1016/j.compstruct.2022.115443.
[27] Yang, Y., Fang, S., Feng, W., Wan, S., Li, L., & Tang, Y. (2023). Flexural and compressive performance of BFRP-reinforced geopolymer sea-sand concrete beams and columns: Experimental and analytical investigation. Composite Structures, 318. doi:10.1016/j.compstruct.2023.117089.
[28] Sun, W., Zheng, Y., Zhou, L., Song, J., & Bai, Y. (2020). A study of the bond behavior of FRP bars in MPC seawater concrete. Advances in Structural Engineering, 24(6), 1110–1123. doi:10.1177/1369433220956816.
[29] Yuan, F., Liu, P., Li, H., & Wu, Y. (2024). Experimental investigations on the flexural behavior of compression-cast seawater sea-sand concrete beams reinforced with CFRP bars. Construction and Building Materials, 445. doi:10.1016/j.conbuildmat.2024.137754.
[30] Ovitigala, T., Ibrahim, M. A., & Issa, M. A. (2016). Serviceability and Ultimate Load Behavior of Concrete Beams Reinforced with Basalt Fiber-Reinforced Polymer Bars. ACI Structural Journal, 113(4). doi:10.14359/51688752.
[31] Attia, K., El Refai, A., & Alnahhal, W. (2020). Flexural behavior of basalt fiber–reinforced concrete slab strips with BFRP bars: Experimental testing and numerical simulation. Journal of Composites for Construction, 24(2). doi:10.1061/(ASCE)CC.1943-5614.0001002.
[32] Grzesiak, S., Schultz-Cornelius, M., & Pahn, M. (2023). Experimental and analytical evaluation of externally bonded BFRP and CFRP strips on the load-bearing behaviour of reinforced concrete structures using distributed fibre optic sensing. Construction and Building Materials, 400. doi:10.1016/j.conbuildmat.2023.132452.
[33] Muhammad, J. H., & Yousif, A. R. (2023). Effect of basalt minibars on the shear strength of BFRP-reinforced high-strength concrete beams. Case Studies in Construction Materials, 18. doi:10.1016/j.cscm.2023.e02020.
[34] Van Hong Bui, L., Thongchom, C., Sirimontree, S., Nguyen, P. T., Nguyen, T.-T., Keawsawasvong, S., Nuaklong, P., & Jongvivatsakul, P. (2022). Experimental, numerical, and analytical study of concrete beams reinforced with steel stirrups and embedded with functional plates. Structures, 39, 293–309. doi:10.1016/j.istruc.2022.03.013.
[35] Abushanab, A., Alnahhal, W., & Farraj, M. (2022). Experimental and finite element studies on the structural behavior of BFRC continuous beams reinforced with BFRP bars. Composite Structures, 281. doi:10.1016/j.compstruct.2021.114982.
[36] Zidani, M. B., Belakhdar, K., Tounsi, A., & Adda Bedia, E. A. (2015). Finite element analysis of initially damaged beams repaired with FRP plates. Composite Structures, 134, 429–439. doi:10.1016/j.compstruct.2015.07.124.
[37] Hawileh, R. A., Assad, M. A., Abdalla, J. A., & Naser, M. Z. (2024). Finite element modeling of reinforced concrete beams externally bonded with PET-FRP laminates. Computers and Concrete, 33(2), 163–173. doi:10.12989/cac.2024.33.2.163.
[38] Tran, H., Nguyen-Thoi, T., & Dinh, H. B. (2025). State-of-the-Art Review of Studies on the Flexural Behavior and Design of FRP-Reinforced Concrete Beams. Materials, 18(14), 3295. doi:10.3390/ma18143295.
[39] Kazemi, M., Madandoust, R., Chastre, C., Reza Esfahani, M., & Courard, L. (2021). Numerical study on the flexural behaviour of normal- and high-strength concrete beams reinforced with GFRP bar, using different amounts of transverse reinforcement. Structures, 34, 3113–3124. doi:10.1016/j.istruc.2021.09.077.
[40] Badawi, M. I., Badawi, M. I., & Awwad, M. (2025). Investigation of an Innovative Technique for R.C. Square Footing Reinforced by GFRP and BFRP Bars with HSC. Civil Engineering Journal (Iran), 11(4), 1547–1562. doi:10.28991/CEJ-2025-011-04-017.
[41] Willam, K. J., & Warnke, E. P. (1975). Constitutive model for the triaxial behavior of concrete. IABSE Proceedings, 19, 1–30.
[42] Dahmani, L., Khennane, A., & Kaci, S. (2010). Crack identification in reinforced concrete beams using ANSYS software. Strength of Materials, 42(2), 232–240. doi:10.1007/s11223-010-9212-6.
[43] Hognestad, E., Hanson, N. W., & McHenry, D. (1961). Rectangular Concrete Stress Distribution in Ultimate Strength Design. ACI Journal Proceedings, 52(12), 11609. doi:10.14359/11609.
[44] Vacev, T., Bonić, Z., Prolović, V., Davidović, N., & Lukić, D. (2015). Testing and finite element analysis of reinforced concrete column footings failing by punching shear. Engineering Structures, 92, 1–14. doi:10.1016/j.engstruct.2015.02.027.
[45] Mohyeddin, A., Goldsworthy, H. M., & Gad, E. F. (2013). FE modelling of RC frames with masonry infill panels under in-plane and out-of-plane loading. Engineering Structures, 51, 73–87. doi:10.1016/j.engstruct.2013.01.012.
[46] Godat, A., Chaallal, O., & Obaidat, Y. (2020). Non-linear finite-element investigation of the parameters affecting externally-bonded FRP flexural-strengthened RC beams. Results in Engineering, 8. doi:10.1016/j.rineng.2020.100168.
[47] Ahmed, H. Q., Jaf, D. K., & Yaseen, S. A. (2020). Flexural strength and failure of geopolymer concrete beams reinforced with carbon fibre-reinforced polymer bars. Construction and Building Materials, 231, 117185. doi:10.1016/j.conbuildmat.2019.117185.
[48] Abdel-Jaber, M., Al-Nsour, R., & Ashteyat, A. (2025). Flexural strengthening and rehabilitation of continuous reinforced concrete beams using BFRP sheets: Experimental and analytical techniques. Composites Part C: Open Access, 16. doi:10.1016/j.jcomc.2024.100556.
- Authors retain all copyrights. It is noticeable that authors will not be forced to sign any copyright transfer agreements.
- This work (including HTML and PDF Files) is licensed under a Creative Commons Attribution 4.0 International License.![]()















